PedroGeoGISdev wiki
  • Home
  • Linux OS
    • Linux: concepts
    • Linux: basic concepts
    • Linux: Bash
    • Linux: su and sudo
    • Linux: pipes
    • Linux: File System
    • Linux: Virtual Machines

    • Linux: distros
    • Linux Distros: Ubuntu
    • Linux Distros: Mint
    • Linux Distros: Debian
    • Linux Distros: openSuse
    • Linux Distros: Manjaro
    • Linux Distros: Red Hat Enterprise

    • Linux: laboratories
    • Linux Lab#LI01-1: Choose Linux
    • Linux Lab#LI01-2: Install at least three distributions
    • Linux Lab#LI01-3: Adjust user permissions
    • Linux Lab#LI02-1: Export env user with grep and pipe
    • Linux Lab#LI03-1: Manage users and groups
    • Linux Lab#LI03-2: Manage files
    • Linux Lab#LI03-3: Manage software
    • Linux Lab#LI03-4: Manage hardware
    • Linux Lab#LI04-1: Bash scripting, qtool
    • Linux Lab#LI04-2: Bash scripts as terminal tool
    • Linux Lab#LI04-3: Distribute the terminal app

    • Linux readings
    • Linux Resources
  • DevOps
    • What is DevOps
    • DevOps: Introduction
    • DevOps: Agile and Microservices
    • Infrastructure as code (IaC)
    • Immutable Infrastructure
    • Software Lifecycle

    • Documentation
    • How to document: Quarto and Obsidian

    • Network protocols
    • Network: Basics
    • Network: Client-server
    • Network Protocols
    • Network: DNS
    • Network: API Rest
    • Network: gRPC
    • Network: Websocket
    • Network: SMTP
    • Network: Ping
    • Network: UDP
    • Network: webhook
    • Network: SOAP
    • Network: graphQL

    • Version Control
    • Git
    • GitHub
    • Idea and GitHub 2023
    • Git and GitHub 2023 CLI

    • IDEs
    • IDE: Visual Code
    • IDE: IntellJIdea

    • DevOps tools
    • Amazon Web Services AWS
    • Docker
    • Jenkins pipelines
    • Kubernetes k8s
    • Digital Ocean
    • Nagios
    • Ansible

    • DevOps Laboratories
    • Lab 1: chat App
    • Lab 2: Spring Boot AWS AEB manually
    • Lab 3: Spring Boot and AWS S3 publisher
    • Lab 4: Spring Boot Docker/Jenkins
    • Lab 5: k8s on Digital Ocean
    • Lab 6: Spring Boot AWS codecommit

    • DevOps readings
    • DevOps Resources
  • MarkUp
    • MarkUp Languages
    • Introduction Markup
    • HTML Markup
    • Markdown Markup
    • Markdown and HTML working together, good idea?

    • Quarto Markdown
    • Quarto Markdown: basics
    • Quarto Markdown: creating
    • Quarto Markdown: publishing
    • Quarto Markdown: code & data
    • Quarto Markdown: api rest call
    • Quarto Markdown: OJS Cells
    • Quarto Markdown: cheat-sheet

    • Styling: CSS
    • Cascade Style Sheet
    • Cascade Style Sheet: Box Model and Containers
    • CSS: W3.css

    • MarkUp Languages Laboratories
    • Lab#MD01-1: Create and publish by Quarto

    • MarkUp Languages readings
    • MarkUp Languages Resources
  • Java SE
    • What is Java SE
    • Java Standard Edition: Basics
    • Java Standard Edition: Principles
    • Java MOOC Helsinki
    • Java MOOC Helsinki Syllabus

    • Java Create Project
    • Java SE: Maven
    • Java SE: Create Maven Project
    • Java SE: Project push GitHub
    • Java SE: JUnit and TDD

    • Java Concepts
    • Java SE: Class and Objects
    • Java SE: Scope
    • Java SE: static modifier
    • Java SE: Coupling and DDD
    • Java SE: Packages
    • Java SE: Abstract/Interface
    • Java SE: Java 8

    • Java Principles
    • Java SE: Encapsulation
    • Java SE: Abstraction
    • Java SE: Inherence
    • Java SE: Polymorphism

    • Java Design Patterns
    • Java Patterns: UML
    • Java Patterns: Types
    • Singleton
    • Factory
    • Abstract Factory
    • Builder
    • Facade
    • Bridge
    • Decorator
    • Composite
    • Observer
    • Strategy
    • State
    • Commander

    • Java SE Laboratories
    • Lab#SE00-1: Maven Person
    • Lab#SE00-2: Maven Clinic
    • Lab#SE00-3: Library Model
    • Lab#SE00-4: Abstract/Interface Human
    • Lab#SE01-1: Maven/Gradle Person and Account
    • Lab#SE01-2: Maven/Gradle Person and Account stored in JSON
    • Lab#SE02-1: Movie/Review, Model
    • Lab#SE02-2: Movie/Review, CRUD Operations
    • Lab#SE02-3: Movie/Review, factory
    • Lab#SE02-4: Movie/Review, interactivity and coupling
    • Lab#SE02-5: Movie/Review, simulate interactivity by console
    • Lab#SE03-1: Library/Book, Core-Model
    • Lab#SE03-2: Library/Book, Sprint Zero
    • Lab#SE03-3: Library/Book, Expand Model
    • Lab#SE04-1: healthyFood Restaurant, Core Model

    • Java SE readings
    • Java SE Resources
  • Python
    • Python Basics
    • Python: Basic Concepts
    • Python: Tips
  • JavaScript
    • JavaScript Basics
    • JavaScript: Basic Concepts
    • JavaScript: Tips
  • Spring
    • Spring Legacy
    • Spring Framework
    • Spring MVC
    • Springs Servlets

    • Spring Boot Basics
    • Spring Boot: fundamentals
    • Spring Boot: create a Project
    • Spring Boot: H2 DB and Thymeleaf
    • Spring Boot: cycle

    • Spring Boot Concepts
    • Spring Boot: Dependency Injection
    • Spring Boot: Annotations
    • Spring Boot: Controller
    • Spring Boot: View
    • Spring Boot: Thymeleaf
    • Spring Boot: Vaadin Flow
    • Spring Boot: Vaadin Hilla
    • Spring Boot: Model
    • Spring Boot: Rest
    • Spring Boot: Data & DB
    • Spring Boot: JPA & DI
    • Spring Boot: JPA Mappings
    • Spring Boot: JPA Relationships
    • Spring Boot: JPA Queries
    • Spring Boot: JPA Inherence
    • Spring Boot: Scaling

    • Spring Boot Laboratories
    • Lab#SB00-1: Library UML
    • Lab#SB00-2: CRUD User
    • Lab#SB00-3: LibraryManagement
    • Lab#SB00-4: API Rest
    • Lab#SB00-5: Rest & JPA-H2
    • Lab#SB00-6: Rest & MongoDB
    • Lab#SB00-7: Styling
    • Lab#SB01-1: DataBase
    • Lab#SB02-1: JPA Relationships
    • Lab#SB03-1: APIs & cloud
    • Lab#SB04-1: JPA Inherence
    • Lab#SB05-1: API Rest
    • Lab#SB06-1: employeeCourse
    • Lab#SB07-1: monitor Book
    • Lab#SB08-1: Restaurant UML
    • Lab#SB08-2: Vaadin
    • Lab#SB08-3: H2 and API Rest
    • Lab#SB08-4: JPA
    • Lab#SB08-5: Test API Rest
    • Lab#SB09-1: SpringIO Conference

    • Spring Boot readings
    • Spring Boot Resources
  • ReactJS
    • ReactJS: Principles
    • React JS: Introduction
    • React JS: render virtual DOM
    • React JS: Create a React project
    • React JS: Components
    • React JS: JSX
    • React JS: props and state

    • JavaScript: web scripting
    • JavaScript: basics
    • JavaScript: functions
    • JavaScript: objects
    • JavaScript: variables
    • JavaScript: flux control

    • ES6: ECMAScript 6
    • React JS ES6: arrow functions
    • React JS ES6: import modules
    • React JS ES6: array, data and key
    • React JS ES6: destructuring
    • React JS ES6: spread operator

    • ReacJS 18: Hooks
    • React JS: Rules of Hooks
    • ReactJS: useState
    • React JS: useReducer
    • React JS: useRef
    • React JS: useEffect
    • React JS: useContext
    • ReactJS: useMemo
    • ReactJS: custom hooks

    • ReactJS: Designing an App
    • React JS App: async
    • React JS App: events
    • React JS App: router
    • React JS App: conditional render
    • React JS App: styling

    • React JS: Laboratories
    • Lab#RE01-1: API Rest Axios
    • Lab#RE02-1: Router & Hooks
    • Lab#RE03-1: to-do app
    • Lab#RE03-2: HighCharts
    • Lab#RE03-3: API Rest Mono
    • Lab#RE03-4: API Rest Domains
    • Lab#RE03-5: data management
    • Lab#RE04-1: todo & server
    • Lab#RE04-2: Spring Boot & ReactJS
    • Lab#RE05-1: chat & websockets
    • Lab#RE05-2: chat: backend
    • Lab#RE05-3: chat & AWS
    • Lab#RE05-4: chat: test ws AWS
    • Lab#RE05-5: chat & front
    • Lab#RE05-6: chat & ws: front
    • Lab#RE06-1: healthyFood Restaurant
    • Lab#RE06-1-PR: create a pull request
    • Lab#RE07-1: traffic lights simulation

    • React JS readings
    • ReactJS Resources
  • Learning
    • Vocabulary
    • General Vocabulary
    • SCRUM Vocabulary
    • DevOps Vocabulary
    • Java SE Vocabulay
    • Spring Boot Vocabulary
    • DataBase Vocabulary
    • ReactJS Vocabulary
    • Web Vocabulary

    • Learning
    • Useful Questions
    • Learning: tips
    • Writing
    • Taking Notes
    • Comments
    • Document
    • Auto-Evaluate

    • Books & Articles
    • Books
    • Articles

    • What is SCRUM
    • SCRUM Agile Methodology
    • Agile Manifesto & Values
    • SCRUM Guide

    • Scrum Steps
    • Meetings, Impediments and Iterations
    • User stories, Tasks and Habits
    • Delivering Value & Communication
    • ScrumMaster, how it works
    • Mindset, the key to everything
    • Product Owner, how it works
    • Managing Time & Mind
    • Team & the Specialist
    • Albertus’ Dilemma
    • Before SCRUM
    • Team Dynamics
    • Emotions and Thoughts
    • Decision Making and Intuition
    • Beyond SCRUM
    • Balances, atmosphere and tools

    • Resources
    • SCRUM Resources
  • QGIS
    • QGIS basics
    • QGIS: basic concepts

    • QGIS laboratories
    • QGIS Laboratory 1: Introduction to Open Source GIS
  • ArcGIS Pro
    • ArcGIS Pro basics
    • ArcGIS Pro: basic concepts

    • ArcGIS Pro laboratories
    • ArcGIS Pro Laboratory 1: Getting Started
  • Bookmarks
    • Online Resources
    • Online Resources
  • About
    • About me and this site
    • About me
    • About this site
    • About images credit
  • Email
  • GitHub
  • LinkedIn
  1. Spring Boot Concepts
  2. Spring Boot: Data & DB
  • Spring

  • Spring Legacy
    • Spring Framework
    • Spring MVC
    • Springs Servlets

  • Spring Boot Basics
    • Spring Boot: fundamentals
    • Spring Boot: create a Project
    • Spring Boot: H2 DB and Thymeleaf
    • Spring Boot: cycle

  • Spring Boot Concepts
    • Spring Boot: Dependency Injection
    • Spring Boot: Annotations
    • Spring Boot: Controller
    • Spring Boot: View
    • Spring Boot: Thymeleaf
    • Spring Boot: Vaadin Flow
    • Spring Boot: Vaadin Hilla
    • Spring Boot: Model
    • Spring Boot: Rest
    • Spring Boot: Data & DB
    • Spring Boot: JPA & DI
    • Spring Boot: JPA Mappings
    • Spring Boot: JPA Relationships
    • Spring Boot: JPA Queries
    • Spring Boot: JPA Inherence
    • Spring Boot: Scaling

  • Spring Boot Laboratories
    • Lab#SB00-1: Library UML
    • Lab#SB00-2: CRUD User
    • Lab#SB00-3: LibraryManagement
    • Lab#SB00-4: API Rest
    • Lab#SB00-5: Rest & JPA-H2
    • Lab#SB00-6: Rest & MongoDB
    • Lab#SB00-7: Styling

    • Lab#SB01-1: DataBase
    • Lab#SB02-1: JPA Relationships
    • Lab#SB03-1: APIs & cloud
    • Lab#SB04-1: JPA Inherence
    • Lab#SB05-1: API Rest

    • Lab#SB06-1: employeeCourse

    • Lab#SB07-1: monitor Book

    • Lab#SB08-1: Restaurant UML
    • Lab#SB08-2: Vaadin
    • Lab#SB08-3: H2 and API Rest
    • Lab#SB08-4: JPA
    • Lab#SB08-5: Test API Rest

    • Lab#SB09-1: SpringIO Conference

  • Spring Boot readings
    • Spring Boot Resources

On this page

  • 1 Overview
  • 2 Database or store?
  • 3 SQL
  • 4 NoSQL
  • 5 SQL vs NoSQL
    • 5.1 Comparative table
  • 6 Examples
  • Edit this page
  • Report an issue
  1. Spring Boot Concepts
  2. Spring Boot: Data & DB

Spring Boot: Data & DB

Spring Boot Data & DB

Spring-Boot
data
Spring Boot Data
Author

albertprofe

Published

Tuesday, June 1, 2021

Modified

Sunday, August 10, 2025

📘 Data

Spring Data’s mission is to provide a familiar and consistent, Spring-based programming model for data access.

It makes it easy to use data access technologies, relational and non-relational databases, map-reduce frameworks, and cloud-based data services.

This is an umbrella project which contains many subprojects that are specific to a given database.

The projects are developed by working together with many of the companies and developers that are behind these exciting technologies.


Spring Boot Request-Response Cycle

Spring Boot Request-Response Cycle

1 Overview

Spring Data

Spring Data
  • Spring Boot Data
Note

Spring Data is a collection of frameworks that provide developers with a simple and consistent way to access data from various databases and data stores.

It helps reduce boilerplate code and enables rapid development of data-driven applications by providing abstractions for common data access tasks such as CRUD operations, query creation, and pagination. Features:

  • Powerful repository and custom object-mapping abstractions
  • Dynamic query derivation from repository method names
  • Implementation domain base classes providing basic properties
  • Support for transparent auditing (created, last changed)

Secondary features: Possibility to integrate custom repository code - Easy Spring integration via JavaConfig and custom XML namespaces - Advanced integration with Spring MVC controllers - Experimental support for cross-store persistence

Spring Boot provides support for both SQL and NoSQL databases through its Spring Data module.

Spring Boot supports both SQL and NoSQL databases through its Spring Data module, making it easy to work with different types of databases in your application.

For SQL databases, Spring Data provides support for popular relational databases like MySQL, PostgreSQL, Oracle, and SQL Server. The SQL support in Spring Boot is primarily based on the Java Persistence API (JPA) and provides easy-to-use abstractions for querying and manipulating data in a relational database.

On the other hand, for NoSQL databases like MongoDB or DynamoDB, Spring Data provides a consistent interface for working with various NoSQL data stores. The NoSQL support in Spring Boot is built on top of the Spring Data MongoDB module and offers features like object mapping, query building, and integration with the Spring Framework.

To use Spring Data in your Spring Boot application, you can add the appropriate Spring Data dependency to your project and configure the data source properties in your application.properties or application.yml file.

Once configured, you can use Spring Data repositories to interact with your database and perform CRUD operations on your data.

2 Database or store?

  • Book: PIOTR FULMAŃSKI, NoSQL Theory and examples

A datastore (store) is, as the name indicates, a place where data is stored. The simplest example of a store is a flat file saved on your disk.

You can also save data in a database, in which the data are stored physically in files, but those files are managed by some, very often sophisticated, management system.

Viewed from this perspective, database are a special type of datastore.

Not all NoSQL databases have a builtin “manager”, or their functionality is very limited, so the management is done in the application level. That is why you may see them just as an another one storage system. Simply speaking, simple NoSQL databases (for example key-value) are very often referred as a store while those more complicated (graph for example) as a database, but this is not rule of the thumb.

3 SQL

Database model used by SQL

Database model used by SQL

We can classify database-management systems according to the database models that they support. Not going far into the past we can say that first large-scale used model, dominant in the market for more than 20 years, were relational databases arise in the 1970s.

We refer them as SQL databases because Structured Query Language was used by the vast majority of them for writing and querying data. SQL (in a sense: SQL databases) utilizes Edgar F. Codd’s relational model based on tabular data representation:

SQL is relationnal

SQL is relationnal

4 NoSQL

  • What is NoSQL?

NoSQL databases (aka “not only SQL”) are non-tabular databases and store data differently than relational tables.

NoSQL databases come in a variety of types based on their data model. The main types are document, key-value, wide-column, document-oriented and graph.

What is NoSQL?

What is NoSQL?

They provide flexible schemas and scale easily with large amounts of data and high user loads.

Denormalization can be defined as the copying of the same data into multiple documents or tables in order to simplify/optimize query processing or to fit the user’s data into a particular data model.

employee NoSQL

employee NoSQL
  • Google sheet Employee template

5 SQL vs NoSQL

NoSQL vs. SQL: Important Differences

NoSQL vs. SQL: Important Differences

Examples of SQL database engine are: MySQL, PostgreSQL, Microsoft SQL Server, SQLite and H2 Database.

Examples of Non-Relational database engines are: MongoDB, Apache Cassandra, Redis, Couchbase, Apache HBase and DynamoDB AWS.

5.1 Comparative table

Concept SQL NoSQL
Data Model Relational Document, Key-Value, Column-Family, Graph
Query Language Structured Query Language (SQL) Query APIs, sometimes proprietary
Scalability Vertical Horizontal
Data Consistency Strong Eventual
Transactional Support ACID compliance Limited
Schema Definition Required Optional
Query Flexibility Limited Flexible
Join Operations Complex Not supported
Data Modeling Fixed schema Dynamic schema
Availability and Fault Tolerance Low High

6 Examples

  • Evolution of SQL DB mapping in Spring
  • Lab#SB04-1: JPA Inherence strategies
  • Lab#SB01-1: DataBase
Back to top
Spring Boot: Rest
Spring Boot: JPA & DI

This website is built with Quarto.

Difficulties are just things to overcome, after all. Ernest Shackleton

  • Edit this page
  • Report an issue