PedroGeoGISdev
  • Home
  • Linux OS
    • Linux: concepts
    • Linux: basic concepts
    • Linux: Bash
    • Linux: su and sudo
    • Linux: pipes
    • Linux: File System
    • Linux: Virtual Machines

    • Linux: distros
    • Linux Distros: Ubuntu
    • Linux Distros: Mint
    • Linux Distros: Debian
    • Linux Distros: openSuse
    • Linux Distros: Manjaro
    • Linux Distros: Red Hat Enterprise

    • Linux: laboratories
    • Linux Lab#LI01-1: Choose Linux
    • Linux Lab#LI01-2: Install at least three distributions
    • Linux Lab#LI01-3: Adjust user permissions
    • Linux Lab#LI02-1: Export env user with grep and pipe
    • Linux Lab#LI03-1: Manage users and groups
    • Linux Lab#LI03-2: Manage files
    • Linux Lab#LI03-3: Manage software
    • Linux Lab#LI03-4: Manage hardware
    • Linux Lab#LI04-1: Bash scripting, qtool
    • Linux Lab#LI04-2: Bash scripts as terminal tool
    • Linux Lab#LI04-3: Distribute the terminal app

    • Linux readings
    • Linux Resources
  • DevOps
    • What is DevOps
    • DevOps: Introduction
    • DevOps: Agile and Microservices
    • Infrastructure as code (IaC)
    • Immutable Infrastructure
    • Software Lifecycle

    • Documentation
    • How to document: Quarto and Obsidian

    • Network protocols
    • Network: Basics
    • Network: Client-server
    • Network Protocols
    • Network: DNS
    • Network: API Rest
    • Network: gRPC
    • Network: Websocket
    • Network: SMTP
    • Network: Ping
    • Network: UDP
    • Network: webhook
    • Network: SOAP
    • Network: graphQL

    • Version Control
    • Git
    • GitHub
    • Idea and GitHub 2023
    • Git and GitHub 2023 CLI

    • IDEs
    • IDE: Visual Code
    • IDE: IntellJIdea

    • DevOps tools
    • Amazon Web Services AWS
    • Docker
    • Jenkins pipelines
    • Kubernetes k8s
    • Digital Ocean
    • Nagios
    • Ansible

    • DevOps Laboratories
    • Lab 1: chat App
    • Lab 2: Spring Boot AWS AEB manually
    • Lab 3: Spring Boot and AWS S3 publisher
    • Lab 4: Spring Boot Docker/Jenkins
    • Lab 5: k8s on Digital Ocean
    • Lab 6: Spring Boot AWS codecommit

    • DevOps readings
    • DevOps Resources
  • MarkUp
    • MarkUp Languages
    • Introduction Markup
    • HTML Markup
    • Markdown Markup
    • Markdown and HTML working together, good idea?

    • Quarto Markdown
    • Quarto Markdown: basics
    • Quarto Markdown: creating
    • Quarto Markdown: publishing
    • Quarto Markdown: code & data
    • Quarto Markdown: api rest call
    • Quarto Markdown: OJS Cells
    • Quarto Markdown: cheat-sheet

    • Styling: CSS
    • Cascade Style Sheet
    • Cascade Style Sheet: Box Model and Containers
    • CSS: W3.css

    • MarkUp Languages Laboratories
    • Lab#MD01-1: Create and publish by Quarto

    • MarkUp Languages readings
    • MarkUp Languages Resources
  • Java SE
    • What is Java SE
    • Java Standard Edition: Basics
    • Java Standard Edition: Principles
    • Java MOOC Helsinki
    • Java MOOC Helsinki Syllabus

    • Java Create Project
    • Java SE: Maven
    • Java SE: Create Maven Project
    • Java SE: Project push GitHub
    • Java SE: JUnit and TDD

    • Java Concepts
    • Java SE: Class and Objects
    • Java SE: Scope
    • Java SE: static modifier
    • Java SE: Coupling and DDD
    • Java SE: Packages
    • Java SE: Abstract/Interface
    • Java SE: Java 8

    • Java Principles
    • Java SE: Encapsulation
    • Java SE: Abstraction
    • Java SE: Inherence
    • Java SE: Polymorphism

    • Java Design Patterns
    • Java Patterns: UML
    • Java Patterns: Types
    • Singleton
    • Factory
    • Abstract Factory
    • Builder
    • Facade
    • Bridge
    • Decorator
    • Composite
    • Observer
    • Strategy
    • State
    • Commander

    • Java SE Laboratories
    • Lab#SE00-1: Maven Person
    • Lab#SE00-2: Maven Clinic
    • Lab#SE00-3: Library Model
    • Lab#SE00-4: Abstract/Interface Human
    • Lab#SE01-1: Maven/Gradle Person and Account
    • Lab#SE01-2: Maven/Gradle Person and Account stored in JSON
    • Lab#SE02-1: Movie/Review, Model
    • Lab#SE02-2: Movie/Review, CRUD Operations
    • Lab#SE02-3: Movie/Review, factory
    • Lab#SE02-4: Movie/Review, interactivity and coupling
    • Lab#SE02-5: Movie/Review, simulate interactivity by console
    • Lab#SE03-1: Library/Book, Core-Model
    • Lab#SE03-2: Library/Book, Sprint Zero
    • Lab#SE03-3: Library/Book, Expand Model
    • Lab#SE04-1: healthyFood Restaurant, Core Model

    • Java SE readings
    • Java SE Resources
  • Python
    • Python Basics
    • Python: Basic Concepts
    • Python: Numbers
    • Python: Strings
    • Python: Conditionals
    • Python: Lists and Loops
    • Python: Nested Loops
    • Python: Tuples
    • Python: Sets
    • Python: Dictionaries
    • Python: Functions
    • Python: Higher-order Functions
    • Python: Variable Scope
    • Python: Variable Assigment
    • Python: None keyword in Python
    • Python: Object Oriented Programming (OOP)
    • Python: Inheritance and Polymorphism
    • Python: Encapsulation
    • Python: Abstraction
    • Python: Exceptions
    • Python: Cheat-Sheets
  • JavaScript
    • JavaScript Basics
    • JavaScript: Fundamentals
    • JavaScript: Data Types
    • JavaScript: Variables
    • JavaScript: Operators
    • JavaScript: Conditionals
    • JavaScript: Loops
    • JavaScript: Functions
    • JavaScript: Arrays
    • JavaScript: Objects

    • React Framework

    • ReactJS: Principles
    • React JS: Introduction
    • React JS: render virtual DOM
    • React JS: Create a React project
    • React JS: Components
    • React JS: JSX
    • React JS: props and state

    • JavaScript: web scripting
    • JavaScript: basics
    • JavaScript: functions
    • JavaScript: objects
    • JavaScript: variables
    • JavaScript: flux control

    • ES6: ECMAScript 6
    • React JS ES6: arrow functions
    • React JS ES6: import modules
    • React JS ES6: array, data and key
    • React JS ES6: destructuring
    • React JS ES6: spread operator

    • ReacJS 18: Hooks
    • React JS: Rules of Hooks
    • ReactJS: useState
    • React JS: useReducer
    • React JS: useRef
    • React JS: useEffect
    • React JS: useContext
    • ReactJS: useMemo
    • ReactJS: custom hooks

    • ReactJS: Designing an App
    • React JS App: async
    • React JS App: events
    • React JS App: router
    • React JS App: conditional render
    • React JS App: styling

    • React JS: Laboratories
    • Lab#RE01-1: API Rest Axios
    • Lab#RE02-1: Router & Hooks
    • Lab#RE03-1: to-do app
    • Lab#RE03-2: HighCharts
    • Lab#RE03-3: API Rest Mono
    • Lab#RE03-4: API Rest Domains
    • Lab#RE03-5: data management
    • Lab#RE04-1: todo & server
    • Lab#RE04-2: Spring Boot & ReactJS
    • Lab#RE05-1: chat & websockets
    • Lab#RE05-2: chat: backend
    • Lab#RE05-3: chat & AWS
    • Lab#RE05-4: chat: test ws AWS
    • Lab#RE05-5: chat & front
    • Lab#RE05-6: chat & ws: front
    • Lab#RE06-1: healthyFood Restaurant
    • Lab#RE06-1-PR: create a pull request
    • Lab#RE07-1: traffic lights simulation

    • React JS readings
    • ReactJS Resources
  • Backend
    • Spring Legacy
    • Spring Framework
    • Spring MVC
    • Springs Servlets

    • Spring Boot Basics
    • Spring Boot: fundamentals
    • Spring Boot: create a Project
    • Spring Boot: H2 DB and Thymeleaf
    • Spring Boot: cycle

    • Spring Boot Concepts
    • Spring Boot: Dependency Injection
    • Spring Boot: Annotations
    • Spring Boot: Controller
    • Spring Boot: View
    • Spring Boot: Thymeleaf
    • Spring Boot: Vaadin Flow
    • Spring Boot: Vaadin Hilla
    • Spring Boot: Model
    • Spring Boot: Rest
    • Spring Boot: Data & DB
    • Spring Boot: JPA & DI
    • Spring Boot: JPA Mappings
    • Spring Boot: JPA Relationships
    • Spring Boot: JPA Queries
    • Spring Boot: JPA Inherence
    • Spring Boot: Scaling

    • Spring Boot Laboratories
    • Lab#SB00-1: Library UML
    • Lab#SB00-2: CRUD User
    • Lab#SB00-3: LibraryManagement
    • Lab#SB00-4: API Rest
    • Lab#SB00-5: Rest & JPA-H2
    • Lab#SB00-6: Rest & MongoDB
    • Lab#SB00-7: Styling
    • Lab#SB01-1: DataBase
    • Lab#SB02-1: JPA Relationships
    • Lab#SB03-1: APIs & cloud
    • Lab#SB04-1: JPA Inherence
    • Lab#SB05-1: API Rest
    • Lab#SB06-1: employeeCourse
    • Lab#SB07-1: monitor Book
    • Lab#SB08-1: Restaurant UML
    • Lab#SB08-2: Vaadin
    • Lab#SB08-3: H2 and API Rest
    • Lab#SB08-4: JPA
    • Lab#SB08-5: Test API Rest
    • Lab#SB09-1: SpringIO Conference

    • Spring Boot readings
    • Spring Boot Resources
  • Learning
    • Vocabulary
    • General Vocabulary
    • SCRUM Vocabulary
    • DevOps Vocabulary
    • Java SE Vocabulay
    • Spring Boot Vocabulary
    • DataBase Vocabulary
    • ReactJS Vocabulary
    • Web Vocabulary

    • Learning
    • Useful Questions
    • Learning: tips
    • Writing
    • Taking Notes
    • Comments
    • Document
    • Auto-Evaluate

    • Books & Articles
    • Books
    • Articles

    • What is SCRUM
    • SCRUM Agile Methodology
    • Agile Manifesto & Values
    • SCRUM Guide

    • Scrum Steps
    • Meetings, Impediments and Iterations
    • User stories, Tasks and Habits
    • Delivering Value & Communication
    • ScrumMaster, how it works
    • Mindset, the key to everything
    • Product Owner, how it works
    • Managing Time & Mind
    • Team & the Specialist
    • Albertus’ Dilemma
    • Before SCRUM
    • Team Dynamics
    • Emotions and Thoughts
    • Decision Making and Intuition
    • Beyond SCRUM
    • Balances, atmosphere and tools

    • Resources
    • SCRUM Resources
  • QGIS
    • QGIS basics
    • QGIS: basic concepts

    • QGIS laboratories
    • QGIS Laboratory 1: Introduction to Open Source GIS
  • ArcGIS Pro
    • ArcGIS Pro basics
    • ArcGIS Pro: basic concepts

    • ArcGIS Pro laboratories
    • ArcGIS Pro Laboratory 1: Getting Started
  • Bookmarks
    • Online Resources
    • Online Resources
  • About
    • About me and this site
    • About me
    • About this site
    • About images credit
  • Maps
  • Featured Projects
    • ✈️ Flight tracker
    • 🧑 People tracker
    • 🚗 Renting Car
    • Email
    • GitHub
    • LinkedIn
  1. Python Basics
  2. Python: Exceptions
  • Python

  • Python Basics
    • Python: Basic Concepts
    • Python: Numbers
    • Python: Strings
    • Python: Conditionals
    • Python: Lists and Loops
    • Python: Nested Loops
    • Python: Tuples
    • Python: Sets
    • Python: Dictionaries
    • Python: Functions
    • Python: Higher-order Functions
    • Python: Variable Scope
    • Python: Variable Assigment
    • Python: None keyword in Python
    • Python: Object Oriented Programming (OOP)
    • Python: Inheritance and Polymorphism
    • Python: Encapsulation
    • Python: Abstraction
    • Python: Exceptions
    • Python: Cheat-Sheets

On this page

  • 1 Overview
  • 2 Why Handle Exceptions?
  • 3 Common Exceptions
  • 4 Try-Except Block
  • 5 Multiple Errors Exception
  • 6 Multiple or Separate Exception Blocks
  • 7 Using “as” in Except
  • 8 Else Block
  • 9 Finally Block
  • 10 Raising Exceptions
  • 11 Custom Exceptions
  • 12 Assert Statement
  • 13 Common Use Cases
  • 14 Example 1: Precondition
  • 15 Example 2: Test Assertion
  • 16 Dangers
  • 17 Exception Design Tips
  • Edit this page
  • View source
  • Report an issue
  1. Python Basics
  2. Python: Exceptions

Python: Exceptions

Exceptions in Python

python
exception
The file system is organized into a hierarchical structure, starting with the root directory
Author

Isaac Boixaderas

Published

Sunday, June 1, 2025

Modified

Tuesday, October 14, 2025

1 Overview

📘 Exceptions in Python

In Python, exceptions are events that disrupt the normal flow of a program when an error occurs during execution. They differ from syntax errors, which are detected before the code runs. Exceptions signal that something unexpected happened while the program was running—such as dividing by zero, accessing a missing file, or using an undefined variable—and allow developers to handle these situations gracefully rather than letting the program crash.​

Python provides a structured mechanism to deal with such errors through try and except blocks. The try block encloses potentially error-prone code, while the except block contains instructions for handling specific exceptions if they occur. You can also use else (which runs when no errors occur) and finally (which always executes) to manage code execution more precisely

2 Why Handle Exceptions?

  • Prevent application crashes
  • Provide user-friendly messages
  • Safely recover from errors
  • Ensure clean resource management

3 Common Exceptions

ValueError: Invalid value.

int('hola')

ValueError: invalid literal for int() with base 10: ‘hola’

TypeError: Incorrect data type.

1 + '123'

TypeError: unsupported operand type(s) for +: ‘int’ and ‘str’

IndexError: List/Tuple index out of range.

x = [1, 2, 3]
x[^5]

IndexError: list index out of range

KeyError: Dictionary key not found.

d = {'a': 1, 'b': 2}
d['c']

KeyError: ‘c’

4 Try-Except Block

  • Used to capture and handle exceptions.
  • Different exceptions, different logic.
  • Allows for graceful failure.
  • Improves user experience: No unexpected crashes.

Fatal error, the whole program stops:

result = 10 / 0
print("This is not printed.")

ZeroDivisionError: division by zero

Handle potential errors gracefully:

try:
    result = 10 / 0
except ZeroDivisionError:
    print("Can't divide by zero!")
print("Program continues to run...")

Output:

Can't divide by zero!
Program continues to run...

Without proper error handling, our programs will crash anyway.

try:
    a = [1, 2, 3]
    print(a[4])
except ZeroDivisionError:
    print("ZeroDivisionError not ocurring...")
print("Program crashes... This is not printed.")

Output:

IndexError: list index out of range

Handling Any Exception

try:
    result = 10 / 0
except:
    print("An error occurred")

Output:

An error occurred
try:
    result = [1, 2, 3]
    print(result[5])
except:
    print("An error occurred")

Output:

An error occurred

Handle as many code as we want in a try-except block

def complicated_function(): 
  # Assume a function that is very complicated
  # # and can raise many different exceptions a = [1, 2, 3] return a[4] / 0 + "hello"
  a = [1, 2, 3]
  return a[4] / 0 + "hello"
try: 
  print("Can handle a lot of code")
  complicated_function()
  print("This will not be printed")
except: 
  print("An error occurred")

Output:

Can handle a lot of code
An error occurred

5 Multiple Errors Exception

Handle multiple types of exceptions at once applying the same logic.

try:
    # risky code
except (ValueError, TypeError):
    # handle exception

6 Multiple or Separate Exception Blocks

  • Handle different exceptions separately.
  • More precise error handling.
try:
    # risky code
except ValueError:
    # handle ValueError
except TypeError:
    # handle TypeError

7 Using “as” in Except

Use as [variable name] to access the original error message object.

# Use `as` to access the error message and type
try:
    result = 10 / 0
except ZeroDivisionError as e:
    print("Can't divide by zero!")
    # Access the error message
    print(f"Original error message: \"{e}\"")
    # Access the error type
    print("Error type:", type(e))

Output:

Can't divide by zero!
Original error message: "division by zero"
Error type: <class 'ZeroDivisionError'>

8 Else Block

  • else: Executes when the try block doesn’t raise exceptions.
  • Useful for code that should run only when no errors occurred.
try:
    print("Try block code")
except ZeroDivisionError:
    print("Handle ValueError")
else:
    print("No exception raised!")

Output:

Try block code
No exception raised!

9 Finally Block

  • finally: Always runs, whether an exception was raised or not.
  • Essential for cleanup tasks, like closing files or releasing resources.
try:
    print("Try block code")
except ZeroDivisionError:
    print("Handle ValueError")
finally:
    print("Always runs!")

Output:

Try block code
Always runs!

With an error.

try:
result = 10 / 0
except ZeroDivisionError:
print("Handle ValueError")
finally:
print("Always runs!")

Output:

Handle ValueError
Always runs!

With an unhandled error.

try:
  a = [1, 2, 3] 
  result = a[5]

except ZeroDivisionError: 
  print("Handle ValueError")
finally:
  print("Always runs!")
  print("Even if the exception is not caught.")

Output:

Always runs!
Even if the exception is not caught.

Everything together.

try: 
  print("Try block code")
except ZeroDivisionError: 
    print("Handle ValueError")
else: 
    print("No exception raised!")
finally: 
    print("Always runs!")

Output:

Try block code
No exception raised!
Always runs!

ANother example.

try: 
  result = 10 / 0
  except ZeroDivisionError: 
    print("Handle ZeroDivisionError")
  except Exception as e: 
    print("Handle any other exceptions") 
    print(e)
  else:
    print("No exception raised!")
  finally: 
    print("Always runs!")

Output:

Handle ZeroDivisionError
Always runs!

10 Raising Exceptions

  • Allows developers to define specific error conditions.
  • Can be used to notify other parts of the software about issues.
  • Promotes building more predictable and safer programs.
def calculate_birth_year(age):
    if age < 0:
        raise ValueError("Age cannot be negative!")
    current_year = datetime.datetime.now().year
    return current_year - age

birth_year = calculate_birth_year(-1)

Error:

Age cannot be negative!

or.

def calculate_birth_year(age): 
  if age < 0: 
    raise ValueError("Age cannot be negative!") 
  if age > 120: 
    raise ValueError(f"Are you sure the person is that old ({age})?!") 
  current_year = datetime.datetime.now().year 
  return current_year - age
birth_year = calculate_birth_year(125)

Error:

Are you sure the person is that old (125)?!

11 Custom Exceptions

  • Define specific error types for your application.
  • Inherit from Exception for user-defined exceptions.
  • Improves error categorization and handling.
class AgeNegativeError(Exception):
    """Raised when the age is negative."""
    pass

def calculate_birth_year(age):
    if age < 0:
      # We can raise a custom error with a message
      raise AgeNegativeError("Age should not be negative!")

try:
    birth_year = calculate_birth_year(-5)

except AgeNegativeError as e:
    print(f"Error: {e}")
    birth_year = None

if birth_year is not None:
    print(f"Birth year: {birth_year[0]} or {birth_year[1]}")

Output:

Error: Age should not be negative!

12 Assert Statement

  • Debugging aid that tests a condition.
  • Ensure that an expression is True.
  • If assert condition evaluates to False, an AssertionError is raised.
  • Syntax: assert [expression], ["Optional error message"]

Not raises exception:

x = 10
assert x == 10, "Value of x should be 10"

If failed, it raises exception:

x = 5
assert x == 10, "Value of x should be 10"

Behind the scenes

  • assert is mostly just syntactic shorthand for a raise.
  • It works like the following:
# Equivalent to: assert x == 10, "Value of x should be 10"
x = 5
if x != 10:
    raise AssertionError("Value of x should be 10")

13 Common Use Cases

  • Sanity checks: Ensure code behaves as expected.
  • Preconditions: Validate input or environment before executing.
  • Postconditions: Confirm the output or effect of a function.
  • Testing: Used in testing frameworks for validating the correctness of a function.

14 Example 1: Precondition

def square_root(n):
    assert n > 0, "Input should be a positive number"
    return n ** 0.5

15 Example 2: Test Assertion

def add(a, b):
    return a + b

def test_add():
    result = add(2, 3)
    assert result == 5, f"Expected 5, but got {result}"

test_add()
print("Tests passed!")

Output:

Tests passed!

16 Dangers

  • assert can be globally disabled with the -O (optimize) command line switch.
  • Not suitable for production error handling.
  • Use exceptions for errors that shouldn’t be ignored.

17 Exception Design Tips

  • Use try-except:

  • For operations that fail often (e.g., socket calls, file opens, etc.)

  • For unpredictable user inputs (e.g., using a string when it should be an int.)

  • For unreliable third-party libraries (e.g., API calls.)

  • For long-running systems that must not crash (e.g., bank transactions (milions per day…).)

For simple scripts you may want failures to kill your program.

Example:

for transaction in transactions:
    try:
        process_transaction(transaction)
    except DatabaseConnectionError:
        time.sleep(60)
        retry_transaction(transaction)
    except SuspiciousTransactionError as e:
        flag_transaction(transaction, reason=e)
    except Exception as e:
        log_error(e)
        move_to_failed_queue(transaction)
    finally:
        update_transaction_status(transaction)
        close_transaction(transaction)
Back to top
Python: Abstraction
Python: Cheat-Sheets

License: CC0 1.0 Universal

Per aspera, ad astra

  • Edit this page
  • View source
  • Report an issue