PedroGeoGISdev
  • Home
  • Linux OS
    • Linux: concepts
    • Linux: basic concepts
    • Linux: Bash
    • Linux: su and sudo
    • Linux: pipes
    • Linux: File System
    • Linux: Virtual Machines

    • Linux: distros
    • Linux Distros: Ubuntu
    • Linux Distros: Mint
    • Linux Distros: Debian
    • Linux Distros: openSuse
    • Linux Distros: Manjaro
    • Linux Distros: Red Hat Enterprise

    • Linux: laboratories
    • Linux Lab#LI01-1: Choose Linux
    • Linux Lab#LI01-2: Install at least three distributions
    • Linux Lab#LI01-3: Adjust user permissions
    • Linux Lab#LI02-1: Export env user with grep and pipe
    • Linux Lab#LI03-1: Manage users and groups
    • Linux Lab#LI03-2: Manage files
    • Linux Lab#LI03-3: Manage software
    • Linux Lab#LI03-4: Manage hardware
    • Linux Lab#LI04-1: Bash scripting, qtool
    • Linux Lab#LI04-2: Bash scripts as terminal tool
    • Linux Lab#LI04-3: Distribute the terminal app

    • Linux readings
    • Linux Resources
  • DevOps
    • What is DevOps
    • DevOps: Introduction
    • DevOps: Agile and Microservices
    • Infrastructure as code (IaC)
    • Immutable Infrastructure
    • Software Lifecycle

    • Documentation
    • How to document: Quarto and Obsidian

    • Network protocols
    • Network: Basics
    • Network: Client-server
    • Network Protocols
    • Network: DNS
    • Network: API Rest
    • Network: gRPC
    • Network: Websocket
    • Network: SMTP
    • Network: Ping
    • Network: UDP
    • Network: webhook
    • Network: SOAP
    • Network: graphQL

    • Version Control
    • Git
    • GitHub
    • Idea and GitHub 2023
    • Git and GitHub 2023 CLI

    • IDEs
    • IDE: Visual Code
    • IDE: IntellJIdea

    • DevOps tools
    • Amazon Web Services AWS
    • Docker
    • Jenkins pipelines
    • Kubernetes k8s
    • Digital Ocean
    • Nagios
    • Ansible

    • DevOps Laboratories
    • Lab 1: chat App
    • Lab 2: Spring Boot AWS AEB manually
    • Lab 3: Spring Boot and AWS S3 publisher
    • Lab 4: Spring Boot Docker/Jenkins
    • Lab 5: k8s on Digital Ocean
    • Lab 6: Spring Boot AWS codecommit

    • DevOps readings
    • DevOps Resources
  • MarkUp
    • MarkUp Languages
    • Introduction Markup
    • HTML Markup
    • Markdown Markup
    • Markdown and HTML working together, good idea?

    • Quarto Markdown
    • Quarto Markdown: basics
    • Quarto Markdown: creating
    • Quarto Markdown: publishing
    • Quarto Markdown: code & data
    • Quarto Markdown: api rest call
    • Quarto Markdown: OJS Cells
    • Quarto Markdown: cheat-sheet

    • Styling: CSS
    • Cascade Style Sheet
    • Cascade Style Sheet: Box Model and Containers
    • CSS: W3.css

    • MarkUp Languages Laboratories
    • Lab#MD01-1: Create and publish by Quarto

    • MarkUp Languages readings
    • MarkUp Languages Resources
  • Java SE
    • What is Java SE
    • Java Standard Edition: Basics
    • Java Standard Edition: Principles
    • Java MOOC Helsinki
    • Java MOOC Helsinki Syllabus

    • Java Create Project
    • Java SE: Maven
    • Java SE: Create Maven Project
    • Java SE: Project push GitHub
    • Java SE: JUnit and TDD

    • Java Concepts
    • Java SE: Class and Objects
    • Java SE: Scope
    • Java SE: static modifier
    • Java SE: Coupling and DDD
    • Java SE: Packages
    • Java SE: Abstract/Interface
    • Java SE: Java 8

    • Java Principles
    • Java SE: Encapsulation
    • Java SE: Abstraction
    • Java SE: Inherence
    • Java SE: Polymorphism

    • Java Design Patterns
    • Java Patterns: UML
    • Java Patterns: Types
    • Singleton
    • Factory
    • Abstract Factory
    • Builder
    • Facade
    • Bridge
    • Decorator
    • Composite
    • Observer
    • Strategy
    • State
    • Commander

    • Java SE Laboratories
    • Lab#SE00-1: Maven Person
    • Lab#SE00-2: Maven Clinic
    • Lab#SE00-3: Library Model
    • Lab#SE00-4: Abstract/Interface Human
    • Lab#SE01-1: Maven/Gradle Person and Account
    • Lab#SE01-2: Maven/Gradle Person and Account stored in JSON
    • Lab#SE02-1: Movie/Review, Model
    • Lab#SE02-2: Movie/Review, CRUD Operations
    • Lab#SE02-3: Movie/Review, factory
    • Lab#SE02-4: Movie/Review, interactivity and coupling
    • Lab#SE02-5: Movie/Review, simulate interactivity by console
    • Lab#SE03-1: Library/Book, Core-Model
    • Lab#SE03-2: Library/Book, Sprint Zero
    • Lab#SE03-3: Library/Book, Expand Model
    • Lab#SE04-1: healthyFood Restaurant, Core Model

    • Java SE readings
    • Java SE Resources
  • Python
    • Python Basics
    • Python: Basic Concepts
    • Python: Numbers
    • Python: Strings
    • Python: Conditionals
    • Python: Lists and Loops
    • Python: Nested Loops
    • Python: Tuples
    • Python: Sets
    • Python: Dictionaries
    • Python: Functions
    • Python: Higher-order Functions
    • Python: Variable Scope
    • Python: Variable Assigment
    • Python: None keyword in Python
    • Python: Object Oriented Programming (OOP)
    • Python: Inheritance and Polymorphism
    • Python: Encapsulation
    • Python: Abstraction
    • Python: Cheat-Sheets
  • JavaScript
    • JavaScript Basics
    • JavaScript: Basic Concepts
    • JavaScript: Tips

    • React Framework

    • ReactJS: Principles
    • React JS: Introduction
    • React JS: render virtual DOM
    • React JS: Create a React project
    • React JS: Components
    • React JS: JSX
    • React JS: props and state

    • JavaScript: web scripting
    • JavaScript: basics
    • JavaScript: functions
    • JavaScript: objects
    • JavaScript: variables
    • JavaScript: flux control

    • ES6: ECMAScript 6
    • React JS ES6: arrow functions
    • React JS ES6: import modules
    • React JS ES6: array, data and key
    • React JS ES6: destructuring
    • React JS ES6: spread operator

    • ReacJS 18: Hooks
    • React JS: Rules of Hooks
    • ReactJS: useState
    • React JS: useReducer
    • React JS: useRef
    • React JS: useEffect
    • React JS: useContext
    • ReactJS: useMemo
    • ReactJS: custom hooks

    • ReactJS: Designing an App
    • React JS App: async
    • React JS App: events
    • React JS App: router
    • React JS App: conditional render
    • React JS App: styling

    • React JS: Laboratories
    • Lab#RE01-1: API Rest Axios
    • Lab#RE02-1: Router & Hooks
    • Lab#RE03-1: to-do app
    • Lab#RE03-2: HighCharts
    • Lab#RE03-3: API Rest Mono
    • Lab#RE03-4: API Rest Domains
    • Lab#RE03-5: data management
    • Lab#RE04-1: todo & server
    • Lab#RE04-2: Spring Boot & ReactJS
    • Lab#RE05-1: chat & websockets
    • Lab#RE05-2: chat: backend
    • Lab#RE05-3: chat & AWS
    • Lab#RE05-4: chat: test ws AWS
    • Lab#RE05-5: chat & front
    • Lab#RE05-6: chat & ws: front
    • Lab#RE06-1: healthyFood Restaurant
    • Lab#RE06-1-PR: create a pull request
    • Lab#RE07-1: traffic lights simulation

    • React JS readings
    • ReactJS Resources
  • Backend
    • Spring Legacy
    • Spring Framework
    • Spring MVC
    • Springs Servlets

    • Spring Boot Basics
    • Spring Boot: fundamentals
    • Spring Boot: create a Project
    • Spring Boot: H2 DB and Thymeleaf
    • Spring Boot: cycle

    • Spring Boot Concepts
    • Spring Boot: Dependency Injection
    • Spring Boot: Annotations
    • Spring Boot: Controller
    • Spring Boot: View
    • Spring Boot: Thymeleaf
    • Spring Boot: Vaadin Flow
    • Spring Boot: Vaadin Hilla
    • Spring Boot: Model
    • Spring Boot: Rest
    • Spring Boot: Data & DB
    • Spring Boot: JPA & DI
    • Spring Boot: JPA Mappings
    • Spring Boot: JPA Relationships
    • Spring Boot: JPA Queries
    • Spring Boot: JPA Inherence
    • Spring Boot: Scaling

    • Spring Boot Laboratories
    • Lab#SB00-1: Library UML
    • Lab#SB00-2: CRUD User
    • Lab#SB00-3: LibraryManagement
    • Lab#SB00-4: API Rest
    • Lab#SB00-5: Rest & JPA-H2
    • Lab#SB00-6: Rest & MongoDB
    • Lab#SB00-7: Styling
    • Lab#SB01-1: DataBase
    • Lab#SB02-1: JPA Relationships
    • Lab#SB03-1: APIs & cloud
    • Lab#SB04-1: JPA Inherence
    • Lab#SB05-1: API Rest
    • Lab#SB06-1: employeeCourse
    • Lab#SB07-1: monitor Book
    • Lab#SB08-1: Restaurant UML
    • Lab#SB08-2: Vaadin
    • Lab#SB08-3: H2 and API Rest
    • Lab#SB08-4: JPA
    • Lab#SB08-5: Test API Rest
    • Lab#SB09-1: SpringIO Conference

    • Spring Boot readings
    • Spring Boot Resources
  • Learning
    • Vocabulary
    • General Vocabulary
    • SCRUM Vocabulary
    • DevOps Vocabulary
    • Java SE Vocabulay
    • Spring Boot Vocabulary
    • DataBase Vocabulary
    • ReactJS Vocabulary
    • Web Vocabulary

    • Learning
    • Useful Questions
    • Learning: tips
    • Writing
    • Taking Notes
    • Comments
    • Document
    • Auto-Evaluate

    • Books & Articles
    • Books
    • Articles

    • What is SCRUM
    • SCRUM Agile Methodology
    • Agile Manifesto & Values
    • SCRUM Guide

    • Scrum Steps
    • Meetings, Impediments and Iterations
    • User stories, Tasks and Habits
    • Delivering Value & Communication
    • ScrumMaster, how it works
    • Mindset, the key to everything
    • Product Owner, how it works
    • Managing Time & Mind
    • Team & the Specialist
    • Albertus’ Dilemma
    • Before SCRUM
    • Team Dynamics
    • Emotions and Thoughts
    • Decision Making and Intuition
    • Beyond SCRUM
    • Balances, atmosphere and tools

    • Resources
    • SCRUM Resources
  • QGIS
    • QGIS basics
    • QGIS: basic concepts

    • QGIS laboratories
    • QGIS Laboratory 1: Introduction to Open Source GIS
  • ArcGIS Pro
    • ArcGIS Pro basics
    • ArcGIS Pro: basic concepts

    • ArcGIS Pro laboratories
    • ArcGIS Pro Laboratory 1: Getting Started
  • Bookmarks
    • Online Resources
    • Online Resources
  • About
    • About me and this site
    • About me
    • About this site
    • About images credit
  • Maps
  • Featured Projects
    • ✈️ Flight tracker
    • 🧑 People tracker
    • 🚗 Renting Car
    • Email
    • GitHub
    • LinkedIn
  1. Python Basics
  2. Python: Encapsulation
  • Python

  • Python Basics
    • Python: Basic Concepts
    • Python: Numbers
    • Python: Strings
    • Python: Conditionals
    • Python: Lists and Loops
    • Python: Nested Loops
    • Python: Tuples
    • Python: Sets
    • Python: Dictionaries
    • Python: Functions
    • Python: Higher-order Functions
    • Python: Variable Scope
    • Python: Variable Assigment
    • Python: None keyword in Python
    • Python: Object Oriented Programming (OOP)
    • Python: Inheritance and Polymorphism
    • Python: Encapsulation
    • Python: Abstraction
    • Python: Cheat-Sheets

On this page

  • 1 Overview
  • 2 What is Encapsulation?
  • 3 Access Modifiers in Python
    • 3.1 Convention
    • 3.2 Public Attributes
    • 3.3 Protected Attributes
    • 3.4 Private Attributes
  • 4 Getters and Setters
  • 5 The @property Decorator
  • 6 Read-Only Properties
  • 7 Practical Example: Temperature Class
  • 8 Practical Example: Bank Account
  • 9 Why Use Encapsulation?
    • 9.1 1. Data Validation
    • 9.2 2. Maintaining Invariants
    • 9.3 3. Flexibility to Change Implementation
  • 10 Encapsulation Best Practices
  • 11 Exercises
    • 11.1 Exercise 1: Person Class
    • 11.2 Exercise 2: Car Class
    • 11.3 Exercise 3: Library Book System
  • 12 Summary
  • Edit this page
  • View source
  • Report an issue
  1. Python Basics
  2. Python: Encapsulation

Python: Encapsulation

Python Encapsulation

python
encapsulation
oop
Python Encapsulation - Protecting and controlling access to class data
Author

pedromartinezduran

Published

Sunday, June 1, 2025

Modified

Sunday, October 12, 2025

1 Overview

📘 Encapsulation in Python

Encapsulation is one of the fundamental principles of object-oriented programming (OOP). It refers to the bundling of data (attributes) and methods that operate on that data within a single unit (class), while restricting direct access to some of the object’s components. This is a means of preventing accidental interference and misuse of the data. Encapsulation helps to hide the internal state of an object and requires all interaction to be performed through an object’s methods, providing better control over the data and reducing system complexity.

In Python, encapsulation is achieved through access modifiers (public, protected, and private) and property decorators that control how attributes are accessed and modified.

2 What is Encapsulation?

Encapsulation is characterized by several key aspects:

  • Data Hiding: Internal object details are hidden from the outside world. Only the object itself can directly access its internal state.
  • Controlled Access: Access to data is controlled through public methods (getters and setters), allowing validation and logic to be applied when reading or modifying data.
  • Abstraction: Users of a class don’t need to know how it works internally; they only need to know what methods are available.
  • Modularity: Encapsulated code is more modular and easier to maintain, test, and debug.
  • Security: Prevents unauthorized or unintended modifications to sensitive data.

3 Access Modifiers in Python

Unlike languages like Java or C++, Python doesn’t have strict access modifiers. Instead, it uses naming conventions:

  • Public, protected and private are not defined in Python.
  • In Python, everything is public by default.
  • Any attribute or method can be accessed from outside the class.

3.1 Convention

  • Public: No underscore prefix. Accessible from anywhere. Normal variable/method name without underscores.
    • E.g., self.name = 'Cake'
  • Protected: Prefix with a single underscore (_). Intended for internal use within the class and its subclasses.
    • E.g., self._discount = 0.1
  • Private: Prefix with double underscores (__). Name mangling is applied to make it harder to access from outside.
    • E.g., self.__secret = 'hidden'

3.2 Public Attributes

  • Public attributes can be accessed and modified from anywhere.
  • This is the default behavior in Python.

3.3 Protected Attributes

  • Protected attributes use a single underscore prefix (_).
  • This is a convention indicating “internal use” - not enforced by Python.
  • Can still be accessed, but signals to other developers not to access it directly.

3.4 Private Attributes

  • Private attributes use a double underscore prefix (__).
  • Python applies name mangling: __attribute becomes _ClassName__attribute.
  • Makes it harder (but not impossible) to access from outside the class.

4 Getters and Setters

Getters and setters are methods that provide controlled access to private attributes:

  • Getter: Method that returns the value of a private attribute.
  • Setter: Method that sets or updates the value of a private attribute with validation.

5 The @property Decorator

Python provides the @property decorator for a more Pythonic way to implement getters and setters:

  • Makes methods accessible like attributes.
  • Provides cleaner syntax.
  • Allows adding logic to attribute access without changing the interface.

6 Read-Only Properties

You can create read-only properties by defining only a getter without a setter:


7 Practical Example: Temperature Class

A class that stores temperature and provides conversion between Celsius and Fahrenheit:


8 Practical Example: Bank Account

A more complete bank account example with encapsulation:


9 Why Use Encapsulation?

9.1 1. Data Validation


9.2 2. Maintaining Invariants


9.3 3. Flexibility to Change Implementation


10 Encapsulation Best Practices

  1. Use private attributes for internal state that shouldn’t be modified directly.
  2. Provide public methods for controlled access to private data.
  3. Use @property decorator for Pythonic getters and setters.
  4. Validate data in setters to maintain object integrity.
  5. Make computed properties read-only when they depend on other attributes.
  6. Document your interface so users know which methods are public.
  7. Follow naming conventions: single underscore for protected, double for private.

11 Exercises

11.1 Exercise 1: Person Class

Create a Person class with encapsulation:

  • Private attributes: __name, __age, __email
  • Use @property decorators for getters
  • Validate age (must be between 0 and 150)
  • Validate email (must contain ‘@’)

11.2 Exercise 2: Car Class

Create a Car class with:

  • Private attributes: __brand, __model, __speed, __max_speed
  • Methods: accelerate(amount), brake(amount)
  • Speed cannot be negative or exceed max_speed
  • Read-only property for status that returns a description

11.3 Exercise 3: Library Book System

Create a Book class with encapsulation for a library system:

  • Private attributes: __title, __author, __isbn, __is_borrowed
  • Methods: borrow(), return_book()
  • Read-only properties for title, author, isbn
  • Property available that returns borrowing status

12 Summary

Encapsulation is a fundamental OOP principle that:

  • Protects data from unauthorized access and modification
  • Provides controlled access through methods and properties
  • Enables validation to maintain data integrity
  • Improves maintainability by hiding implementation details
  • Increases flexibility to change internal implementation without affecting external code

Python uses naming conventions (single and double underscores) and the @property decorator to implement encapsulation in a Pythonic way.

Back to top
Python: Inheritance and Polymorphism
Python: Abstraction

License: CC0 1.0 Universal

Per aspera, ad astra

  • Edit this page
  • View source
  • Report an issue