PedroGeoGISdev
  • Home
  • Linux OS
    • Linux: concepts
    • Linux: basic concepts
    • Linux: Bash
    • Linux: su and sudo
    • Linux: pipes
    • Linux: File System
    • Linux: Virtual Machines

    • Linux: distros
    • Linux Distros: Ubuntu
    • Linux Distros: Mint
    • Linux Distros: Debian
    • Linux Distros: openSuse
    • Linux Distros: Manjaro
    • Linux Distros: Red Hat Enterprise

    • Linux: laboratories
    • Linux Lab#LI01-1: Choose Linux
    • Linux Lab#LI01-2: Install at least three distributions
    • Linux Lab#LI01-3: Adjust user permissions
    • Linux Lab#LI02-1: Export env user with grep and pipe
    • Linux Lab#LI03-1: Manage users and groups
    • Linux Lab#LI03-2: Manage files
    • Linux Lab#LI03-3: Manage software
    • Linux Lab#LI03-4: Manage hardware
    • Linux Lab#LI04-1: Bash scripting, qtool
    • Linux Lab#LI04-2: Bash scripts as terminal tool
    • Linux Lab#LI04-3: Distribute the terminal app

    • Linux readings
    • Linux Resources
  • DevOps
    • What is DevOps
    • DevOps: Introduction
    • DevOps: Agile and Microservices
    • Infrastructure as code (IaC)
    • Immutable Infrastructure
    • Software Lifecycle

    • Documentation
    • How to document: Quarto and Obsidian

    • Network protocols
    • Network: Basics
    • Network: Client-server
    • Network Protocols
    • Network: DNS
    • Network: API Rest
    • Network: gRPC
    • Network: Websocket
    • Network: SMTP
    • Network: Ping
    • Network: UDP
    • Network: webhook
    • Network: SOAP
    • Network: graphQL

    • Version Control
    • Git
    • GitHub
    • Idea and GitHub 2023
    • Git and GitHub 2023 CLI

    • IDEs
    • IDE: Visual Code
    • IDE: IntellJIdea

    • DevOps tools
    • Amazon Web Services AWS
    • Docker
    • Jenkins pipelines
    • Kubernetes k8s
    • Digital Ocean
    • Nagios
    • Ansible

    • DevOps Laboratories
    • Lab 1: chat App
    • Lab 2: Spring Boot AWS AEB manually
    • Lab 3: Spring Boot and AWS S3 publisher
    • Lab 4: Spring Boot Docker/Jenkins
    • Lab 5: k8s on Digital Ocean
    • Lab 6: Spring Boot AWS codecommit

    • DevOps readings
    • DevOps Resources
  • MarkUp
    • MarkUp Languages
    • Introduction Markup
    • HTML Markup
    • Markdown Markup
    • Markdown and HTML working together, good idea?

    • Quarto Markdown
    • Quarto Markdown: basics
    • Quarto Markdown: creating
    • Quarto Markdown: publishing
    • Quarto Markdown: code & data
    • Quarto Markdown: api rest call
    • Quarto Markdown: OJS Cells
    • Quarto Markdown: cheat-sheet

    • Styling: CSS
    • Cascade Style Sheet
    • Cascade Style Sheet: Box Model and Containers
    • CSS: W3.css

    • MarkUp Languages Laboratories
    • Lab#MD01-1: Create and publish by Quarto

    • MarkUp Languages readings
    • MarkUp Languages Resources
  • Java SE
    • What is Java SE
    • Java Standard Edition: Basics
    • Java Standard Edition: Principles
    • Java MOOC Helsinki
    • Java MOOC Helsinki Syllabus

    • Java Create Project
    • Java SE: Maven
    • Java SE: Create Maven Project
    • Java SE: Project push GitHub
    • Java SE: JUnit and TDD

    • Java Concepts
    • Java SE: Class and Objects
    • Java SE: Scope
    • Java SE: static modifier
    • Java SE: Coupling and DDD
    • Java SE: Packages
    • Java SE: Abstract/Interface
    • Java SE: Java 8

    • Java Principles
    • Java SE: Encapsulation
    • Java SE: Abstraction
    • Java SE: Inherence
    • Java SE: Polymorphism

    • Java Design Patterns
    • Java Patterns: UML
    • Java Patterns: Types
    • Singleton
    • Factory
    • Abstract Factory
    • Builder
    • Facade
    • Bridge
    • Decorator
    • Composite
    • Observer
    • Strategy
    • State
    • Commander

    • Java SE Laboratories
    • Lab#SE00-1: Maven Person
    • Lab#SE00-2: Maven Clinic
    • Lab#SE00-3: Library Model
    • Lab#SE00-4: Abstract/Interface Human
    • Lab#SE01-1: Maven/Gradle Person and Account
    • Lab#SE01-2: Maven/Gradle Person and Account stored in JSON
    • Lab#SE02-1: Movie/Review, Model
    • Lab#SE02-2: Movie/Review, CRUD Operations
    • Lab#SE02-3: Movie/Review, factory
    • Lab#SE02-4: Movie/Review, interactivity and coupling
    • Lab#SE02-5: Movie/Review, simulate interactivity by console
    • Lab#SE03-1: Library/Book, Core-Model
    • Lab#SE03-2: Library/Book, Sprint Zero
    • Lab#SE03-3: Library/Book, Expand Model
    • Lab#SE04-1: healthyFood Restaurant, Core Model

    • Java SE readings
    • Java SE Resources
  • Python
    • Python Basics
    • Python: Basic Concepts
    • Python: Numbers
    • Python: Strings
    • Python: Conditionals
    • Python: Lists and Loops
    • Python: Nested Loops
    • Python: Tuples
    • Python: Sets
    • Python: Dictionaries
    • Python: Functions
    • Python: Higher-order Functions
    • Python: Variable Scope
    • Python: Variable Assigment
    • Python: None keyword in Python
    • Python: Object Oriented Programming (OOP)
    • Python: Inheritance and Polymorphism
    • Python: Encapsulation
    • Python: Abstraction
    • Python: Exceptions
    • Python: Cheat-Sheets
  • JavaScript
    • JavaScript Basics
    • JavaScript: Fundamentals
    • JavaScript: Data Types
    • JavaScript: Variables
    • JavaScript: Operators
    • JavaScript: Conditionals
    • JavaScript: Loops
    • JavaScript: Functions
    • JavaScript: Arrays
    • JavaScript: Objects

    • React Framework

    • ReactJS: Principles
    • React JS: Introduction
    • React JS: render virtual DOM
    • React JS: Create a React project
    • React JS: Components
    • React JS: JSX
    • React JS: props and state

    • JavaScript: web scripting
    • JavaScript: basics
    • JavaScript: functions
    • JavaScript: objects
    • JavaScript: variables
    • JavaScript: flux control

    • ES6: ECMAScript 6
    • React JS ES6: arrow functions
    • React JS ES6: import modules
    • React JS ES6: array, data and key
    • React JS ES6: destructuring
    • React JS ES6: spread operator

    • ReacJS 18: Hooks
    • React JS: Rules of Hooks
    • ReactJS: useState
    • React JS: useReducer
    • React JS: useRef
    • React JS: useEffect
    • React JS: useContext
    • ReactJS: useMemo
    • ReactJS: custom hooks

    • ReactJS: Designing an App
    • React JS App: async
    • React JS App: events
    • React JS App: router
    • React JS App: conditional render
    • React JS App: styling

    • React JS: Laboratories
    • Lab#RE01-1: API Rest Axios
    • Lab#RE02-1: Router & Hooks
    • Lab#RE03-1: to-do app
    • Lab#RE03-2: HighCharts
    • Lab#RE03-3: API Rest Mono
    • Lab#RE03-4: API Rest Domains
    • Lab#RE03-5: data management
    • Lab#RE04-1: todo & server
    • Lab#RE04-2: Spring Boot & ReactJS
    • Lab#RE05-1: chat & websockets
    • Lab#RE05-2: chat: backend
    • Lab#RE05-3: chat & AWS
    • Lab#RE05-4: chat: test ws AWS
    • Lab#RE05-5: chat & front
    • Lab#RE05-6: chat & ws: front
    • Lab#RE06-1: healthyFood Restaurant
    • Lab#RE06-1-PR: create a pull request
    • Lab#RE07-1: traffic lights simulation

    • React JS readings
    • ReactJS Resources
  • Backend
    • Spring Legacy
    • Spring Framework
    • Spring MVC
    • Springs Servlets

    • Spring Boot Basics
    • Spring Boot: fundamentals
    • Spring Boot: create a Project
    • Spring Boot: H2 DB and Thymeleaf
    • Spring Boot: cycle

    • Spring Boot Concepts
    • Spring Boot: Dependency Injection
    • Spring Boot: Annotations
    • Spring Boot: Controller
    • Spring Boot: View
    • Spring Boot: Thymeleaf
    • Spring Boot: Vaadin Flow
    • Spring Boot: Vaadin Hilla
    • Spring Boot: Model
    • Spring Boot: Rest
    • Spring Boot: Data & DB
    • Spring Boot: JPA & DI
    • Spring Boot: JPA Mappings
    • Spring Boot: JPA Relationships
    • Spring Boot: JPA Queries
    • Spring Boot: JPA Inherence
    • Spring Boot: Scaling

    • Spring Boot Laboratories
    • Lab#SB00-1: Library UML
    • Lab#SB00-2: CRUD User
    • Lab#SB00-3: LibraryManagement
    • Lab#SB00-4: API Rest
    • Lab#SB00-5: Rest & JPA-H2
    • Lab#SB00-6: Rest & MongoDB
    • Lab#SB00-7: Styling
    • Lab#SB01-1: DataBase
    • Lab#SB02-1: JPA Relationships
    • Lab#SB03-1: APIs & cloud
    • Lab#SB04-1: JPA Inherence
    • Lab#SB05-1: API Rest
    • Lab#SB06-1: employeeCourse
    • Lab#SB07-1: monitor Book
    • Lab#SB08-1: Restaurant UML
    • Lab#SB08-2: Vaadin
    • Lab#SB08-3: H2 and API Rest
    • Lab#SB08-4: JPA
    • Lab#SB08-5: Test API Rest
    • Lab#SB09-1: SpringIO Conference

    • Spring Boot readings
    • Spring Boot Resources
  • Learning
    • Vocabulary
    • General Vocabulary
    • SCRUM Vocabulary
    • DevOps Vocabulary
    • Java SE Vocabulay
    • Spring Boot Vocabulary
    • DataBase Vocabulary
    • ReactJS Vocabulary
    • Web Vocabulary

    • Learning
    • Useful Questions
    • Learning: tips
    • Writing
    • Taking Notes
    • Comments
    • Document
    • Auto-Evaluate

    • Books & Articles
    • Books
    • Articles

    • What is SCRUM
    • SCRUM Agile Methodology
    • Agile Manifesto & Values
    • SCRUM Guide

    • Scrum Steps
    • Meetings, Impediments and Iterations
    • User stories, Tasks and Habits
    • Delivering Value & Communication
    • ScrumMaster, how it works
    • Mindset, the key to everything
    • Product Owner, how it works
    • Managing Time & Mind
    • Team & the Specialist
    • Albertus’ Dilemma
    • Before SCRUM
    • Team Dynamics
    • Emotions and Thoughts
    • Decision Making and Intuition
    • Beyond SCRUM
    • Balances, atmosphere and tools

    • Resources
    • SCRUM Resources
  • QGIS
    • QGIS basics
    • QGIS: basic concepts

    • QGIS laboratories
    • QGIS Laboratory 1: Introduction to Open Source GIS
  • ArcGIS Pro
    • ArcGIS Pro basics
    • ArcGIS Pro: basic concepts

    • ArcGIS Pro laboratories
    • ArcGIS Pro Laboratory 1: Getting Started
  • Bookmarks
    • Online Resources
    • Online Resources
  • About
    • About me and this site
    • About me
    • About this site
    • About images credit
  • Maps
  • Featured Projects
    • ✈️ Flight tracker
    • 🧑 People tracker
    • 🚗 Renting Car
    • Email
    • GitHub
    • LinkedIn
  1. Python Basics
  2. Python: Nested Loops
  • Python

  • Python Basics
    • Python: Basic Concepts
    • Python: Numbers
    • Python: Strings
    • Python: Conditionals
    • Python: Lists and Loops
    • Python: Nested Loops
    • Python: Tuples
    • Python: Sets
    • Python: Dictionaries
    • Python: Functions
    • Python: Higher-order Functions
    • Python: Variable Scope
    • Python: Variable Assigment
    • Python: None keyword in Python
    • Python: Object Oriented Programming (OOP)
    • Python: Inheritance and Polymorphism
    • Python: Encapsulation
    • Python: Abstraction
    • Python: Exceptions
    • Python: Cheat-Sheets

On this page

  • 1 Overview
  • 2 Key Concepts
  • 3 Nested Loops
  • 4 With list comprehension
  • 5 Matrices
  • 6 Accessing a row
  • 7 Accessing an element
  • 8 Iterating row-wise
  • 9 Iterating column-wise
  • 10 Unpacking in loops
  • 11 User choices example
  • Edit this page
  • View source
  • Report an issue
  1. Python Basics
  2. Python: Nested Loops

Python: Nested Loops

Python Nested Loops

python
loops
The file system is organized into a hierarchical structure, starting with the root directory
Author

Isaac Boixaderas

Published

Sunday, June 1, 2025

Modified

Sunday, November 16, 2025

1 Overview

📘 Nested loops in Python

A nested loop in Python refers to a construction where one loop (the inner loop) is placed inside the body of another loop (the outer loop). For each iteration of the outer loop, the inner loop runs all its iterations from beginning to end before the outer loop proceeds to its next iteration.


2 Key Concepts

  • The outer loop acts as the main controller, and the inner loop completes its cycle entirely within each cycle of the outer loop.
  • Any type of loop (for or while) can be nested within another, with no formal limit on nesting depth.
  • Nested loops are widely used for tasks involving multi-dimensional or hierarchical data, such as traversing matrices, grids, or groups within groups.
  • The total number of iterations in a nested loop equals the product of the iteration counts of the inner and outer loops.
  • The design can be extended to multiple levels, creating deep layers of nested logic as needed.
  • Although powerful, nested loops may introduce performance or readability concerns, especially when deeply nested or used with large datasets.
  • This structure enables efficient handling of repetitive actions that require layered processing, like iterating over two-dimensional arrays or generating combinations.

3 Nested Loops

  • We can nest multiple loops inside one another:
  • What does this print?
# Loop through the first two elements

my_list = [5, 6]

for element in my_list:
    for i in range(2):
        print(element, i)
    print('---')
print('Outside the loop')

# Loop through the first two elements

my_list = [5, 6]

for element in my_list:
    for i in range(2):
        print(element, i)
    print('---')
print('Outside the loop')
5 0
5 1
—
6 0
6 1
Outside the loop

  • break only “breaks” the last (inner) loop. If this one is nested, the outer loops are not affected.

  • What does the following code print?

# nested `break` example

for num in range(1, 5):
    for num2 in range(10, 15):
        if num2 == 13:
            # Break the inner loop
            break
        print(f'Inner num: {num2}')
    if num == 3:
        # Break the outer loop
        break
    print(f'Outer num: {num}')
print('Outside the loop')

4 With list comprehension

my_list = [x + y for x in range(1, 3) for y in range(1, 3)]
print(my_list)
[2, 3, 3, 4]

5 Matrices

  • Also known as matrices.

  • Example:

    matrix = [[3, 4], [1, 5], [2, 2]]
  • Normally visualized as rows and columns:

# Col 1 Col 2
0 3 4
1 1 5
2 2 2

6 Accessing a row

  • For accessing a specific row, just use indexing for accessing the matrix element.
matrix = [[3, 4], [1, 5], [2, 2]]

print(matrix[0])
print(matrix[1])
[3, 4]
[1, 5]

7 Accessing an element

  • For accessing a specific element in the matrix, just use “double” indexing.
  • The first index returns a row (which is a list), as seen before. We then access an element of that list with the second index.
matrix = [[3, 4], [1, 5], [2, 2]]

print(matrix[0][1])
print(matrix[1][1])
print(matrix[2][0])
4
5
2

8 Iterating row-wise

  • We can iterate through each element in the list, which corresponds to each row.

  • Iterate through the matrix row-wise:

matrix = [[3, 4], [1, 5], [2, 2]]

for row in matrix:
    print(row)
[3, 4]
[1, 5]
[2, 2]

  • When we want to keep the row index:
matrix = [[3, 4], [1, 5], [2, 2]]

for i, row in enumerate(matrix):
    print(i, row)
0, [3, 4]
1, [1, 5]
2, [2, 2]

  • Another option (more common in other languages).

  • The length of the matrix is 3, as it contains 3 elements (rows).

matrix = [[3, 4], [1, 5], [2, 2]]

for i in range(len(matrix)):
    print(i, matrix[i])
0, [3, 4]
1, [1, 5]
2, [2, 2]

  • For iterating through each element we need a nested loop:
matrix = [[3, 4], [1, 5], [2, 2]]

for row in matrix:
    for element in row:
        print(element, end=' ')
3 4 1 5 2 2

  • Example, in a less pythonic way.
matrix = [[3, 4], [1, 5], [2, 2]]

num_rows = len(matrix)
num_cols = len(matrix[0])

for i in range(num_rows):
    for j in range(num_cols):
        print(matrix[i][j], end=' ')
3 4 1 5 2 2

9 Iterating column-wise

  • For iterating through each element column-wise:
matrix = [[3, 4], [1, 5], [2, 2]]

num_rows = len(matrix)
num_cols = len(matrix[0])

for j in range(num_cols):
    for i in range(num_rows):
        print(matrix[i][j], end=' ')
3 1 2 4 5 2

  • For iterating column-wise things get a bit more complex.
matrix = [[3, 4], [1, 5], [2, 2]]

num_rows = len(matrix)
num_cols = len(matrix[0])

for j in range(num_cols):
    column = []
    for i in range(num_rows):
        column.append(matrix[i][j])
    print(column)
[3, 1, 2]
[4, 5, 2]

10 Unpacking in loops

  • We can unpack elements in loops row-wise.
matrix = [[3, 4], [1, 5], [2, 2]]

for x, y in matrix:
    print(x + y)
7
6
4

  • As many as we want, as long as each row contains the same number of elements.
matrix = [[3, 4, 2, 3], [1, 5, 8, 7], [2, 2, 9, 6]]

for x1, x2, x3, x4 in matrix:
    print(x1, x2, x3, x4)
3 4 2 3
1 5 8 7
2 2 9 6

11 User choices example

while True:
    choice_text = '''Enter option: 
    1. A
    2. B
    3. Exit

    Option: '''

    opt = int(input(choice_text))

    if opt == 1:
        print('A')
    elif opt == 2:
        print('B')
    elif opt == 3:
        print('Bye')
        break
    print()
Back to top
Python: Lists and Loops
Python: Tuples

License: CC0 1.0 Universal

Per aspera, ad astra

  • Edit this page
  • View source
  • Report an issue