
Running a Bash script

redhat-developer @rhdevelopersdevelopers.redhat.com

Using a shebang header

There are two ways to run a Bash script. The first way is to execute it as a parameter of a direct call to the bash
executable binary, like so:

$ bash myscript

Hello from Bash

WHERE the content of the file myscript is as follows:

echo "Hello from Bash"

myscript

The second way to use the chmod command to change the permissions of the bash script to make it a standalone
executable, like so:

$ chmod +x ./myscript

$./myscript

chmod

bash

Bash commands
Cheat sheet

A Bash script is a text file that contains programming statements that execute commands that are part of the host
computer’s operating system. Typically system administrators and programmers use Bash scripts to avoid having to
repetitively execute tasks manually in a terminal.

A typical use case for a Bash script is to do set up tasks for a newly provisioned computer. Thus, in addition to being
a tool for system administrators and programmers, a Bash script can also be used by system provisioning software.
(The $ symbol that proceeds commands in the examples represents the command line prompt.)

Unlike a binary executable file which knows how to interact with the computer’s operating system directly, a Bash
script, which is always text based, requires another program to run its commands. This other program is called an
interpreter. The interpreter that runs a Bash script is, as the name implies, bash. However, in other cases, a bash script
can be run by another interpreter that’s installed on the host computer. An example of another interpreter is sh .

The way a Bash script lets the operating system know which interpreter to use is according to a declaration made at
the first line of the script. This first line declaration is called a script header. It is also called a shebang. A shebang starts
with the characters #!

An example of a shebang is as follows:

bash

sh

#!

https://en.wikipedia.org/wiki/Shebang_(Unix)

#!/usr/bin/bash

redhat-developer @rhdevelopersdevelopers.redhat.com

The shebang shown above tells the operating system to use the interpreter located at the filepath /usr/bin/bash to
execute the lines of code that will follow in the script.

Another form of a shebang is as follows:

#!/usr/env bash

/usr/bin/bash

The shebang #!/usr/env bash tells the operating system to search the computer’s $PATH to find the bash
interpreter. Thus, any instance of bash can be used as long as the it’s in a location defined by the $PATH environment
variable.

$PATH

$PATH

bash

bash

As mentioned above, a host operating system has to have the capability to run scripts for other interpreted
programming languages as long as the given interpreter is installed on the host computer and the shebang has been
configured properly.

The example below shows a Perl script file. Notice that the script header (a.k.a. shebang) declares the file as a Perl
script:

Executing scripts in another language

#!/usr/bin/perl
use strict;
use warnings;

print "Hello World from Perl\n";

Variables

Using variables is a critical factor for programming Bash scripts. The following sections describe various aspects of
working with variables under Bash.

You declare a variable in a bash script like so VARIABLE_NAME=<value> WHERE <value> is the value assigned to the
variable. Then, to reference the variable, put the $ symbol before the variable name being referenced, like so:
$VARIABLE_NAME.

VARIABLE_NAME=<value> <value>

$

$VARIABLE_NAME

Variable declaration

Example:

#!/usr/bin/env bash
MSG="Hello World"
echo "$MSG " # Hello World

BE CAREFUL to make sure there is no space on either side of the = symbol when declaring a variable. The following
will not work: MYVARIABLE = foo.

=
MYVARIABLE = foo

redhat-developer @rhdevelopersdevelopers.redhat.com

And the statement ${MSG,,} turns all uppercase characters in the variable MSG to lowercase, like so:${MSG,,} MSG

MSG="aBcDeFg"
echo ${MSG,,}

#returns abcdef

Parameter expansion a technique to get the value from the referenced entity such as a variable in a Linux script or an
environment variable according to a piece of processing logic. A variable is processed by enclosing the variable name
within the ${ } characters. The processing logic is defined by characters that follow the variable name. For example
the variable named MSG, the statement ${MSG^^} turns all lowercase characters in the variable MSG to uppercase,
like so:

String manipulation using parameter expansion

${ }

${MSG^^} MSGMSG

MSG="aBcDeFg"
echo ${MSG^^}

#returns ABCDEFG

Examples:

The following examples demonstrate various ways to use parameter expansion on Linux variables.

Word replacement

MSG="Say hi to Chris and Sidney"
echo ${MSG//Chris/Billy}

#returns Say hi to Billy and Sidney

Character replacement using regular expressions

MSG="I need 10"
echo ${MSG//[a-zA-Z]/X}

#returns X XXXX 10

Replace all alphabetic characters with the character X but leave the numerals aloneX

MSG="I need 10"
echo ${MSG//[0-9]/Z}

#returns I need ZZ

Replace all numeric characters with the character Z but leave alphabetic characters aloneZ

redhat-developer @rhdevelopersdevelopers.redhat.com

Extracting substrings

MSG="The Rolling Stones"
echo ${MSG:4}

#returns Rolling Stones

Use the : symbol to get the substring of all the characters after the starting at position 4:

Case conversion

MSG="aBcDeFg"
echo ${MSG^}

#returns ABcDeFg

Use the ^ symbol to convert the first character in a string to uppercase.^

Use the : symbol to get the substring that has 7 characters starting at position 4:

MSG="The Rolling Stones"
echo ${MSG:4:7}

#returns Rolling

Use the # symbol to get the substring after the characters The starting from the left side of the string# The

MSG="The Rolling Stones"
echo ${MSG#The}

#returns Rolling Stones

Use the % symbol to get the substring before the characters Rolling Stones starting the right side of the string% Rolling Stones

MSG="The Rolling Stones"
echo ${MSG%Rolling Stones}

#returns The

 MSG="aBcDeFg"
 echo ${MSG^^}

 #returns ABCDEFG

Use the ^^ symbols to convert the all lowercase characters in a string to uppercase.^^

redhat-developer @rhdevelopersdevelopers.redhat.com

 MSG="TuVwXyZ"
 echo ${MSG,}

 #returns tuVwXyZ

Use the , symbol to convert the first character in a string to lowercase.,

 MSG="TuVwXyZ"
 echo ${MSG,,}

 #returns tuvwxyz

Use the ,, symbols to convert all characters in a string to lowercase.,,

Collections

The following sections describe how to group data as a collection in a bash script. Bash supports two types of
collections. One type is an array. The other type is a map.

An array is a collection in which elements of the collection are accessed according to a number.

A map is a collection in which elements of the collection a key value.

array

array

map

map

Arrays

Creating an array

my_array=('Alex' 'Ada' 'Alexandra')

The following creates an array with three elements and assigns the array to the variable named my_array.my_array

Removing an element to an array

unset my_array[3]

The following uses the unset keyword to remove the fourth element from the array named my_array at index 3.unset my_array 3

redhat-developer @rhdevelopersdevelopers.redhat.com

Viewing data in an array

echo ${my_array[0]}

The following uses an index number to view the data in the first element of the array named my_array.my_array

Getting the number of elements in an array

echo ${#names[@]} # 3

The following uses the # and @ symbols to get a count of the number of elements in the array named my_array.my_array# @

Copy, paste and run in your terminal:

Copy and paste the following code into your terminal window to create and execute a Bash script with the filename
arrays-01.sh.

The Bash script demonstrates the array commands described above.

arrays-01.sh

echo ${my_array[2]}

The following uses an index number to view the data in the third element of the array named my_array.my_array

echo ${my_array[@]}

The following uses the @ symbol to view all elements in the array named my_array.my_array@

Adding an element to an array

my_array+=('Soto')

The following uses the += operator to add an element with the value Soto to the array named my_array.my_arraySoto+=

cat << 'EOF' > arrays-01.sh
#!/usr/bin/env bash

names=('Alex' 'Ada' 'Alexandra')
names+=('Soto') # Appends element, Soto
unset names[3] # Removes element at index 3, (Soto)

echo ${names[0]} # Alex
echo ${names[1]} # Ada
echo ${names[2]} # Alexandra

@ indicates all elements in the array
echo ${names[@]} # Alex Ada Alexandra

Count of names
echo ${#names[@]} # 3
EOF
bash arrays-01.sh

redhat-developer @rhdevelopersdevelopers.redhat.com

Maps

In Bash, a map is a collection of elements that are organized as key-value pairs. Another way to think of a map is as a
named associative array.

To access an element in a map you reference its key.

Creating a map

You create a map using the command declare -A <map_name> WHERE the option -A indicates that the variable
represents an associative array, which is that same as a map.

declare -A <map_name> -A

Examples:

The following example demonstrates creating a map variable named score. The variable score has four elements that
describe the scores of four people named alex, edson, sebi and chris.

score score

alex edson sebi chris

declare -A score
score[alex]="1"
score[edson]="2"
score[sebi]="3"
score[chris]="4"

echo ${!score[@]}

The following example demonstrates using the ! and @ symbols to show all the keys in the map named score.! @

unset score[chris] # Delete chris entry

The following example demonstrates using the unset keyword to delete the element identified by the key chris from
the map variable named score.

unset

score

chris

redhat-developer @rhdevelopersdevelopers.redhat.com

echo ${score[@]} # show all the values

The following example demonstrates using the @ symbol to show all the values in the map named score.@ score

echo ${score[edson]} # show the value of edson: 2

The following example demonstrates calling the value of the element associated with the key edson.edson

echo ${#score[@]} # show the number of elements in the map: 3

The following example demonstrates using the # and @ symbols to get a count of the number of elements in the map
variable named score.score

@

Examples:

cat << 'EOF' > maps-01.sh
#!/usr/bin/env bash

declare -A score
score[alex]="1"
score[edson]="2"
score[sebi]="3"
score[chris]="4"
echo ${!score[@]} # alex edson sebi chris
unset score[chris] # Delete chris entry
echo ${score[@]} # show all the values
echo ${!score[@]} # show all keys
echo ${score[edson]} # show the value of edson: 2
echo ${#score[@]} # show the number of elements in the map: 3
EOF
bash maps-01.sh

Copy, paste and run in your terminal:

Collections

Functions provide a way to group commands in a bash script together under a common name for reuse.

Basic function syntax

redhat-developer @rhdevelopersdevelopers.redhat.com

Using parameters

The following demonstrates basic function syntax. The function is named printmessages. The function uses the echo
command to send two messages to standard output.

printmessages

Parameters are passed to a function implicitly when added to the execution command of the function.

Parameters are detected in a function by using the $ symbol to call the parameter according the position of the
parameter in the command line.

The following code demonstrates a function that reads the parameter passed as the first argument in the command
line.

$

printmessages() {
 echo "I am message 1"
 echo "I am message 2"
}

Copy, paste and run in your terminal:

Copy, paste and run in your terminal:

Copy and paste the following code into your terminal window to create and execute a Bash script that has a function
named printmessages.printmessages

Copy and paste the following code into your terminal window to create and execute a Bash script that has a function
named helloworld that processes the first parameter in the command line execution.helloworld

cat << 'EOF' > function-example-01.sh
#!/usr/bin/env bash

printmessages() {
 echo "I am message 1"
 echo "I am message 2"
}

call the function
printmessages
EOF

bash function-example-01.sh

chelloworld() {
 echo "Hello World from $1"
 }

helloworld "Alex"

cat << 'EOF' > function-example-02.sh
#!/usr/bin/env bash

helloworld() {
 echo "Hello World from $1"
 }

call the function
helloworld "Alex"
EOF

bash function-example-02.sh

redhat-developer @rhdevelopersdevelopers.redhat.com

cat << 'EOF' > function-example-03.sh
#!/usr/bin/env bash

helloworld() {
 echo "Hello World from $1 and $2"
 }

call the function
helloworld "Alex" "Edson"
EOF

bash function-example-03.sh

Returns Hello World from AlexHello World from Alex

Returns Hello World from Alex and EdsonHello World from Alex and Edson

Copy, paste and run in your terminal:
Copy and paste the following code into your terminal window to create and execute a Bash script that has a function
named helloworld that processes the two parameters in the command line execution.helloworld

Setting a global variable

A function can write data to a variable previous defined in a Bash script. The following bash script demonstrates the
technique.

function set_favorite_food(){
 favorite_food=$1
}

favorite_food="apples"
echo favorite_food

set_favorite_food "cheese"

echo favorite_food

Copy, paste and run in your terminal:

Returns

redhat-developer @rhdevelopersdevelopers.redhat.com

cat << 'EOF' > function-04.sh
set_favorite_food(){
 favorite_food=$1
}

favorite_food="apples"
echo $favorite_food

set_favorite_food "cheese"

echo $favorite_food
EOF

bash function-04.sh

apples
cheese

if [<statement>]; then
 <consequence statement(s)>
fi

if [<statement>]; then
 <consequence statement(s)>
else
 <consequence statement(s)>
fi

Conditional statements

A conditional statement is an if..then..else statement. When writing a conditional statement you check to see if an
expression is true or false and respond accordingly.

A simple conditional statement uses the following syntax:

if..then..else

WHERE if, then and fi are keywords with if indicating the beginning of the conditional statement and fi indicating
the end of the conditional statement.

An if..then conditional statement uses the following syntax with the else keyword :

if then fi if

ifif..then

fi

Numeric statements

The following bash script demonstrates using a conditional statement to test numeric values. The code uses the
$RANDOM function to get a random number. $RANDOM is defined by the operating system and always present. The
expr keyword is the bash command that evaluates an expression. Also, the bash script uses the predefined modulus
(%) operator which is available to the script by default from the operating system.

$RANDOM

expr

%

$RANDOM

 mynum=$RANDOM
 echo $mynum
 if [$(expr $mynum % 2) == "0"]; then
 echo even
 else
 echo odd
 fi

redhat-developer @rhdevelopersdevelopers.redhat.com

cat << 'EOF' > conditional-example-01.sh
#!/usr/bin/env bash
mynum=$RANDOM
echo $mynum
if [$(expr $mynum % 2) == "0"]; then
 echo even
else
 echo odd
fi
EOF

bash conditional-example-01.sh

mystring="I like cherries"
positive_indicator=" like "
if [["$mystring" == *"$positive_indicator"*]]; then
 echo "It's a good review"
fi
EOF

Copy, paste and run in your terminal:

Copy, paste and run in your terminal:

Copy and paste the following code into your terminal window to create and execute a Bash script that creates a
random number and then runs an if..then..else conditional statement to determine if the random value is even or odd.if..then..else

Copy and paste the following code into your terminal window to create and execute a Bash script that tests if certain
substrings exist and do not exist in a string provided as a parameter to the script.

String statements

The following bash script demonstrates using a conditional statement to check if a word exists in a string.

cat << 'EOF' > conditional-example-02.sh
#!/usr/bin/env bash
mystring=$1

positive_indicator=" like "
negative_indicator=" don't "

if [[("$mystring" == *"$positive_indicator"*) && ("$mystring" !=
"$negative_indicator")]]; then
 echo "It's a good review."
else
 echo "It's a bad review."
fi

EOF

bash conditional-example-02.sh "I like cherries"

bash conditional-example-02.sh "I hate cherries"

bash conditional-example-02.sh "I don't like cherries"

bash conditional-example-02.sh "I like apple"

redhat-developer @rhdevelopersdevelopers.redhat.com

FILE=/<path/to/filename>
if test -f "$FILE"; then
 echo "$FILE exists."
fi

touch newfile.txt

cat << 'EOF' > conditional-example-03.sh
#!/usr/bin/env bash
FILE=newfile.txt
if test -f "$FILE"; then
 echo "$FILE exists."
fi
EOF

bash conditional-example-03.sh

File statements

The following bash script demonstrates using a conditional statement to determine if a file exists.

Copy, paste and run in your terminal:
Copy and paste the following to create a file and then run the Bash script that checks for the file’s existence.

Loops

Looping is a technique that enables Bash scripts to run programming statements and expressions continuously.

The following sections describe different types of loops.

redhat-developer @rhdevelopersdevelopers.redhat.com

Range

Looping collections

The following code demonstrates running a loop over a range according to lower and upper limits.

The following code uses the do keyword to demonstrate running printing all elements from a plain array:

for i in {1..5}; do
 echo "Hello World $i"
done

for i in "${names[@]}"; do
 echo "Hello $i"
done

cat << 'EOF' > basic-range-01.sh
#!/usr/bin/env bash

for i in {1..5}; do
 echo "Hello World $i"
done

EOF

bash basic-range-01.sh

cat << 'EOF' > range-names-01.sh
#!/usr/bin/env bash

names=('Alex' 'Ada' 'Alexandra', 'Soto')

for i in "${names[@]}"; do
 echo "Hello $i"
done

EOF

bash range-names-01.sh

Copy, paste and run in your terminal:

Copy, paste and run in your terminal:

Copy and paste the code to run a Bash script that runs a loop over 5 iterations.

Copy and paste the code to run a Bash script that prints all the elements in an array using a for loop and the @
keyword.

for @

do

redhat-developer @rhdevelopersdevelopers.redhat.com

for key in "${!score[@]}"; do
 echo $key
done

for val in "${score[@]}"; do
 echo $val
done

Print keys of all elements from a key/value array:

Print keys of all elements from a key/value array:

cat << 'EOF' > range-keys-01.sh
#!/usr/bin/env bash

declare -A score

score[alex]="1"
score[edson]="2"
score[sebi]="3"
score[chris]="4"

for key in "${!score[@]}"; do
 echo $key
done

EOF
bash range-keys-01.sh

cat << 'EOF' > value-keys-01.sh
#!/usr/bin/env bash

declare -A score

score[alex]="1"
score[edson]="2"
score[sebi]="3"
score[chris]="4"

for val in "${score[@]}"; do
 echo $val
done

EOF
bash value-keys-01.sh

Copy, paste and run in your terminal:

Copy, paste and run in your terminal:

Copy and paste the code to run a Bash script that prints all the elements in a key/value array.

Files and directories

for i in /tmp/*.log; do
 echo $i
done

redhat-developer @rhdevelopersdevelopers.redhat.com

for i in /var/*; do
 echo $(basename "$i")
done

cat << 'EOF' > files-01.sh
#!/usr/bin/env bash

echo All log files in the /tmp directory

for i in /tmp/*.log; do
 echo $i
done
EOF
bash files-01.sh

cat << 'EOF' > files-02.sh
#!/usr/bin/env bash

echo All subdirectories in /var

for i in /var/*; do
 echo $(basename "$i")
done
EOF

bash files-02.sh

Get all files in a directory sub-directories

Get all sub-directories

Copy, paste and run in your terminal:

Copy, paste and run in your terminal:

The following script gets all files in the directory /tmp that have the extension .log:/tmp .log

The following script gets all subdirectories in the directory /var/var

Copy and paste the code to run a Bash script that traverses all the subdirectories in the directory /var./var

A while loop runs continuously until a certain condition is met.

The following code uses the less then or equal to symbol -le to run a loop until the counter variable x reaches the
number 5.

-le x
x5

While loop

x=1;
while [$x -le 5]; do
 echo "Hello World"
 ((x=x+1))
done

redhat-developer @rhdevelopersdevelopers.redhat.com

cat << 'EOF' > while-loop-01.sh
#!/usr/bin/env bash

x=1;
while [$x -le 5]; do
 echo "Hello World"
 ((x=x+1))
done
EOF

bash while-loop-01.sh

Copy, paste and run in your terminal:

Copy and paste the following code to create and run a Bash script that demonstrates a while loop.while

Reporting success and error in a Bash script is accomplished using status codes. By convention success is reported by
exiting with the number 0. Any number greater than 0 indicates an error. Also, there is a convention for error
numbers which is explained in the article on Red Hat System Admin Bash command line exit codes demystified.

00

Working with status codes

The following demonstrates a Bash code that returns an error code 22 when the script is executed without a
parameter.

22

if [-z "$1"]; then
 echo "No parameter";
 exit 22;
fi

Using the exit keyword

Copy, paste and run in your terminal:
Copy and paste the following code to create and run a Bash script that returns an error code when the script is
executed without a parameter.

https://www.redhat.com/sysadmin/exit-codes-demystified

cat << 'EOF' > status-code-01.sh
#!/usr/bin/env bash
if [-z "$1"]; then
 echo "No parameter";
 exit 22;
fi
EOF

bash status-code-01.sh

echo $?

redhat-developer @rhdevelopersdevelopers.redhat.com

Returns 22

The following code demonstrates using the return keyword to return a status code from a function in a Bash script.return

The first result of the call to echoMessage is 22
Bash Rocks! after the IF/THEN STATEMENT
The second result of the call to echoMessage is 0

function echoMessage(){
 if [-z "$1"]; then
 return 22;
 fi
}

cat << 'EOF' > status-code-02.sh
#!/usr/bin/env bash
function echoMessage(){
 if [-z "$1"]; then
 return 22;
 fi

 echo $1 after the IF/THEN STATEMENT
}

echoMessage
res=$?
echo The first result of the call to echoMessage is $res

echoMessage "Bash Rocks!"

res=$?
echo The second result of the call to echoMessage is $res

EOF

bash status-code-02.sh

Return a status value from a function

Returns

