
Stefano Picozzi,
Mike Hepburn & Noel O'Connor

DevOps with
OpenShift
CLOUD DEPLOYMENTS MADE EASY

Compliments of

Stefano Picozzi, Mike Hepburn, and Noel O’Connor

DevOps with OpenShift
Cloud Deployments Made Easy

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-97662-3

[LSI]

DevOps with OpenShift
by Stefano Picozzi, Mike Hepburn, and Noel O’Connor

Copyright © 2017 Red Hat, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian Anderson and Virginia Wilson
Production Editor: Nicholas Adams
Copyeditor: Jasmine Kwityn
Proofreader: Sonia Saruba

Indexer: Angela Howard
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

May 2017: First Edition

Revision History for the First Edition
2017-04-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491975961 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. DevOps with OpenShift, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491975961

Table of Contents

Preface. vii

1. Introduction to DevOps with OpenShift. 1
DevOps 1
Containers 2
Container Orchestration 2
Continuous Integration 2
Continuous Delivery 3
Continuous Deployment 3
Pipelines 3
Software Configuration Management 4
Deployment Patterns 4
Continuous Improvement 5
Summary 5

2. Installing the All-In-One OpenShift. 7
Software Requirements 7

Install OpenShift oc Client Tools 8
Install Docker 9
Launch OpenShift 10

Verify Your Environment 11
Log In Using the Command Line 11
Log In from Console 12

Working with Storage 14
Create a Persistent Volume 14
Set Up the Volume Claim 15

Create a GitHub Account 16
Alternative Form Factors 16

iii

Summary 16

3. Deployments. 17
The Replication Controller 17
Deployment Strategies 18

Rolling 18
Triggers 19
Recreate 21
Custom 22
Lifecycle Hooks 22
Deployment Pod Resources 26

Blue-Green Deployments 27
A/B Deployments 28
Canary Deployments 31
Rollbacks 32
Summary 34

4. Pipelines. 35
Our First Pipeline Example 35

Pipeline Components 38
So What’s Happened Here? Examination of the Pipeline Details 39
Explore Jenkins 41

Multiple Project Pipeline Example 43
Build, Tag, Promote 43
Create Projects 44
Add Role-Based Access Control 45
Deploy Jenkins and Our Pipeline Definition 45
Deploy Our Sample Application 46
Run Our Pipeline Deployment 48
Quickly Deploying a New Branch 50

Managing Image Changes 50
Cascading Pipelines 52
Customizing Jenkins 55
Parallel Build Jobs 57
Summary 58

5. Configuration Management. 59
Secrets 59

Secret Creation 60
Using Secrets in Pods 60
Additional Information 63

Configuration Maps 64

iv | Table of Contents

Creating Configuration Maps 64
Mounting Configuration Maps as Volumes 64
Mounting the Configuration Map as Environment Variables 65

Environment Variables 67
Adding Environment Variables 67
Removing Environment Variables 67
Change Triggers 68

Labels and Annotations 70
Downward API 70
Handling Large Configuration Data Sets 73

Persistent Volumes 73
Layered Images 73

Summary 74

6. Custom Image Builds. 75
OpenShift Builds 75

Build Strategies 75
Build Sources 76
Build Configurations 76
Source to Image 79
S2I Process 80
Custom S2I Scripts 81

Custom S2I Builder 81
Builder Image 82
S2I Scripts 83
Adding a New Builder Image 84
Building a Sample Application 84
Troubleshooting 87

Summary 88

7. Application Management. 91
Integrated Logging 91
Container Logs Are Transient 92
Aggregated Logging 92
Kibana 94
Some General Aggregated Kibana Queries 95
Simple Metrics 97
Resource Scheduling 99

Quotas 101
Quota Scopes 103
Quota Enforcement 104
Limit Ranges and Requests Versus Limits 104

Table of Contents | v

Multiproject Quotas 106
Applications 107
Eviction and Pod Rescheduling 107
Overcommit 108
Auto Pod Scaling 108
Java-Based Application Monitoring and Management Using Jolokia 110
Summary 114

Afterword. 117

A. OpenShift and 12 Factor Apps. 119

Index. 129

vi | Table of Contents

Preface

If you’re old, don’t try to change yourself, change your environment.
—B. F. Skinner

One view of DevOps is that it helps take on that last mile problem in software: value
delivery. The premise is that encouraging behaviors such as teaming, feedback, and
experimentation will be reinforced by desirable outcomes such as better software,
delivered faster and at lower cost. For many, the DevOps discourse then quickly turns
to automation. That makes sense as automation is an environmental intervention that
is relatively actionable. If you want to change behavior, change the environment!

In this context, automation becomes a significant investment decision with strategic
import. DevOps automation engineers face a number of design choices. What level of
interface abstraction is appropriate for the automation tooling? Where should you
separate automation concerns of an infrastructure nature from those that should be
more application centric?

These questions matter because automation tooling that is accessible to all can better
connect all the participants in the software delivery process. That is going to help fos‐
ter all those positive teaming behaviors we are after. Automation that is decoupled
from infrastructure provisioning events makes it possible to quickly tenant new
project streams. Users can immediately self-serve without raising a new infrastruc‐
ture requisition.

We want to open the innovation process to all, be they 10x programmers or citizen
developers. Doing DevOps with OpenShift makes this possible, and this book will
show you how.

This is a practical guide that will show how to easily implement and automate power‐
ful cloud deployment patterns using OpenShift. The OpenShift container manage‐
ment platform provides a self-service platform for users. Its natively container-aware
approach will allow us to show you an application-centric view to automation.

vii

Who Should Read This Book
If you are keen to awaken your inner DevOps then this book is for you. It is intended
for programmers who want to learn how to use OpenShift to automate the software
delivery process to achieve continuous integration, delivery, and deployment.

Note that we deliberately take an application workload-centric view of the problem.
Concerns related to the overall management and operation of the OpenShift system
will be the subject of a forthcoming title in O’Reilly’s OpenShift series.

We will step you through how to develop container-based applications that can be
easily and safely changed via pipelines and powerful deployment patterns. Starting
with a few simple steps to launch OpenShift as an all-in-one image on your worksta‐
tion, we will cover examples for application environment configuration, persistent
volume claims, and A/B, blue-green, and rolling or replacement deployment strate‐
gies. Techniques for third-party tool chain integration using webhooks will be
explained and demonstrated.

This book builds on the material covered in OpenShift for Developers and so assumes
some background knowledge of basic OpenShift development concepts such as:

• Developing and deploying an application.
• Using application templates.
• Managing application workloads.
• Working with Docker images.

As with the previous title, we also assume you are familiar with basic Linux or Win‐
dows shell commands, and how to install additional software on your computer. The
software you install will provide you with a complete working OpenShift environ‐
ment that you can use locally for development or testing.

We have used a PHP and a Node.js application for many of the examples in this book.
You do not need to be proficient in PHP or Node.js. If you are familiar with any of
the popular programming languages you will do just fine.

Why We Wrote This Book
As Red Hat consultants, we are often called upon to assist clients in the deployment
and widespread adoption of OpenShift as their container management platform.
They are drawn to OpenShift as a technology enabler for increased agility and
responsiveness. In this context, change-ability can be the most critical of nonfunc‐
tional requirements. Continuous improvement needs continuous user feedback. We
have found that the ability to push, test, and then roll forward or roll back small
application changes to live users can become critical to realizing such benefits. In this

viii | Preface

http://shop.oreilly.com/product/0636920052012.do

book we want to help you implement DevOps practices using OpenShift so that you
can quickly deliver quality applications that will make a difference for your users.

Online Resources
In this book you will install a self-contained OpenShift environment based on Open‐
Shift Origin. This is the upstream open source version of OpenShift on which Red
Hat’s OpenShift Container Platform, OpenShift Dedicated, and OpenShift Online
products are based.

Various options are available to stand up a self-contained environment. For this book,
we will focus on the oc cluster up technique that starts up a local all-in-one cluster
based on OpenShift Origin. Alternative approaches are available, such as the Vagrant
all-in-one virtual machine described at the OpenShift Origin site. This procedure was
covered in OpenShift for Developers and so is not repeated in detail here.

OpenShift Origin will always include all the latest features, with support being pro‐
vided by the OpenShift community.

The OpenShift product releases are created as a regular snapshot of the OpenShift
Origin project. The product releases do not always have the very latest features, but if
you have a commercial Red Hat subscription, the product releases include support
from Red Hat.

If you would like to try out the OpenShift Container Platform version, a couple of
options are available.

The first is to register for a Red Hat Developers account. The Red Hat Developer Pro‐
gram allows you to access versions of Red Hat products for personal use on your own
computer. One of the products made available through the program is the Red Hat
Container Development Kit. This includes a version of OpenShift that you can install
on your own computer, but which is based on OpenShift Container Platform rather
than OpenShift Origin.

A second way of trying out OpenShift Container Platform is via the Amazon Web
Services (AWS) Test Drive program. This will set you up an OpenShift environment
running across a multinode cluster on AWS.

Take a look at more in-depth documentation on OpenShift and how to use it at the
OpenShift documentation site.

Check out the OpenShift blog, where regular articles are published on OpenShift.

If you want to hear about how others in the OpenShift community are using Open‐
Shift, or wish to share your own experiences, you can join the OpenShift Commons.

Preface | ix

https://www.openshift.org/
https://www.openshift.org/
https://www.openshift.com/container-platform
https://www.openshift.com/dedicated/
https://www.openshift.com/
https://github.com/openshift/origin/blob/master/docs/cluster_up_down.md
https://www.openshift.org/vm/
http://shop.oreilly.com/product/0636920052012.do
http://developers.redhat.com/
http://developers.redhat.com/products/cdk/overview/
http://developers.redhat.com/products/cdk/overview/
https://aws.amazon.com/testdrive/redhat/
https://aws.amazon.com/testdrive/redhat/
https://docs.openshift.org/
https://blog.openshift.com/
http://commons.openshift.org/

If you have questions or issues, you can reach the OpenShift team through Stack
Overflow, on Twitter (@openshift), or in the #openshift channel on IRC’s FreeNode
network.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/devops-with-openshift.

x | Preface

http://stackoverflow.com/
http://stackoverflow.com/
https://twitter.com/openshift
https://github.com/devops-with-openshift

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “DevOps with OpenShift by Stefano
Picozzi, Mike Hepburn, and Noel O’Connor (O’Reilly). Copyright 2017 Red Hat, Inc.,
978-1-491-97662-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

Preface | xi

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://oreilly.com/safari

707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Stefano
It’s a privilege to contribute to a book such as this. For this, I am grateful to my family
and Red Hat for allowing me to indulge in those private, quiet moments it takes to
then get it done!

I also appreciate the many clients who have taken the time to share their aspirations
and challenges with me. Software process improvement is hard. All the insights and
suggestions presented here originate there.

Mike
One of my favorite quotes related to content creation is this one from Harry S. Tru‐
man: “It is amazing what you can accomplish if you do not care who gets the credit.”

It is with this humility that I wish to acknowledge all of the fantastic work from the
OpenShift community that has provided ideas that have gone into this book.

You Rock.

Noel
Writing this book has been a whole heap of fun and I’m grateful to Stefano and Mike
for inviting me to participate in this project. I’d also like to thank my wife and chil‐
dren for their patience and support while writing this book.

The true power of this platform is in its open source foundations and the multitude
of perspectives and opinions that only a diverse open community can bring. Thanks
also to all those involved in the internal Red Hat teams who develop, productize, test,
document, and support this platform.

xii | Preface

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction to DevOps with OpenShift

This book provides a practical guide for using OpenShift as an enablement technol‐
ogy for DevOps. OpenShift’s combination of container management platform with
natively container-aware automation can bring those Developer and Operations con‐
stituencies together in ways not previously possible. This enables software work
products to present themselves in a standardized form to your preferred continuous
integration and delivery tool chains.

Container awareness makes it possible to leverage deployment strategies and quality
of service characteristics honored by the container management platform and under‐
lying orchestration engine. We can start thinking in terms of containers-as-code rather
than infrastructure-as-code.

So to get started, let’s review some key DevOps concepts as interpreted with a
container-centric viewpoint.

DevOps
DevOps is concerned with aligning the constituents in the software delivery process
to a common goal of value delivery—and it’s not just Developers and Operators, but
InfoSec and Quality Assurance functions and more. Recognize that wealth is created
when the work product is valued by actors external to the production system. Value
delivery outcomes are measured by metrics tied to production delivery velocity, qual‐
ity, and waste. DevOps emphasizes behavioral- or cultural-related changes such as
those which encourage teaming, inclusion, feedback, and experimentation. Techno‐
logical interventions such as automation are central as they can reinforce such target
behaviors. DevOps does not necessarily imply functional roles in software delivery
such as development, quality assurance, or operations are merged or seconded. More

1

important is that a professional respect and shared sensibility is formed across the
delivery team.

Containers
Containers are the runtime representation of a packaging format based on a light‐
weight, immutable image. Runtime dependencies are resolved within the image
which facilitates portability. This makes possible the agreement on a standardized
software work product. Management and runtime tooling that is container aware can
then be applied consistently no matter what the underlying technology stack.
Container-based workloads are suitable for multi-tenancy on a single compute
instance and when implemented securely can realize significant operation efficien‐
cies. An important corollary is that launching a new workload does not incur the cost
of provisioning new compute infrastructure. This enables a true on-demand, self-
service experience for users.

Container Orchestration
Container orchestration involves the lifecycle management of container workloads,
including functions such as to schedule, stop, start, and replicate across a cluster of
machines. Compute resources for running workloads are abstracted, allowing the
host infrastructure to be treated as a single logical deployment target. Kubernetes is
an open source community project addressing container orchestration. It groups
containers that make up an application into logical units for easy management and
discovery, and features self-healing, service discovery, load balancing, and storage
services among its rich feature set. Orchestration plays a critical role in our design
goal of application-centricity as quality of service attributes and deployment patterns
are executed by invoking Kubernetes API primitives.

Continuous Integration
Continuous integration (CI) concerns the integration of code from potentially multi‐
ple authors into a shared source code management (SCM) repository. Such check-ins
could occur many times a day, and automation steps in such a process could include
gates or controls to expose any issues as early as possible. SCMs such as Git
include workflow support to commit to trunk, push, and merge code pull requests
from multiple developers. With containers, a Git push event could be configured to
then trigger an image build event via the webhooks mechanism.

2 | Chapter 1: Introduction to DevOps with OpenShift

Continuous Delivery
Once a CI strategy is in place, consideration can then move to achieving continuous
delivery (CD). This involves automating the steps required to promote the work
product from one environment to the next within the defined software development
lifecycle (SDLC). Such steps could include automated testing, smoke, unit, functional,
and static code analysis and static dependency checks for known security vulnerabili‐
ties. With containers, promotion in later stages of the SLC may merely involve the
tagging of the (immutable) image to mark acceptance. Binary promotions are also
possible such that only the image is pushed (to the target registry of the new environ‐
ment), leaving source code in situ.

Continuous Deployment
By convention, we can denote the special case of automated continuous delivery to
production as continuous deployment (CD). We make such a distinction because such
deployments may be subject to additional governance processes and gates—for exam‐
ple, deliberate human intervention to manage risk and complete sign-off procedures.
We make such a distinction because such deployments may be subject to additional
governance processes. As per Figure 1-1, there may be scenarios for deliberate human
intervention to manage risk and complete sign-off procedures.

Figure 1-1. Continuous delivery versus deployment

Pipelines
Pipelines are a representation of the flow/automation in a CI/CD process. Typically a
pipeline might call out discrete steps in the software delivery process and present
them visually or via a high-level scripting language so the flow can be manipulated.

Continuous Delivery | 3

The steps might include build, unit tests, acceptance tests, packaging, documentation,
reporting, and deployment and verification phases. Well-designed pipelines help
deliver better quality code faster by enabling participants in the software delivery
process to more easily diagnose and respond to feedback. As illustrated in Figure 1-2,
diagnosis and response turnaround can be accelerated by organizing releases into
smaller and more frequent release bundles.

Figure 1-2. Smaller releases, release often, faster feedback

Software Configuration Management
For our purposes we will take a narrower view of software configuration management
(CM) and focus on the recommended software engineering practice of separating
dynamic configuration from static runtime software. Doing so allows developers and
operations engineers to change the configuration without having to rebuild the run‐
time such as might occur when deploying to different environments. Containers,
based as they are on immutable images, amplify this behavior as the alternative would
be configuration layered across multiple images for each deployment scenario.

Deployment Patterns
Aligned with the goal of automation across all steps in the software delivery lifecycle
are patterns for deployment. We look here for strategies that can balance across crite‐
ria including safety, testability, reversibility, and downtime minimization in cloud-
scale scenarios. Some deployment patterns also offer opportunities for capturing and

4 | Chapter 1: Introduction to DevOps with OpenShift

responding to feedback. An A/B deployment allows for testing a user-defined
hypothesis such as whether application version A is more effective than B. Usage
results can then drive weighted load balancing across the alternatives. Automation of
deployment strategies in this DevOps world are implemented by driving the orches‐
tration APIs.

Continuous Improvement
Let’s conclude this chapter by covering continuous improvement (Figure 1-3), which
should be the thread that connects all of the process improvement–related practices
summarized. The environment changes and so must we. These practices make it easy
and inexpensive to experiment, formulate, and test hypotheses, as well as capture, act
on, and experiment with the feedback received. This way we can continue to inject
energy into the system and so maintain a state of dynamic stability—a balance of
adaptive/agile versus fixed/stable.

Figure 1-3. Continuous improvement

Summary
We covered here some of what is unique and nuanced about DevOps with OpenShift
and why it matters. Realizing these DevOps concepts using natively container-aware
automation can bring cloud deployment power to all the people, from 10x program‐
mer to citizen developer. The following chapters will show you how.

Continuous Improvement | 5

CHAPTER 2

Installing the All-In-One OpenShift

The same OpenShift codebase can take on many form factors. It can be a large public
cloud deployment, offered as a managed service, a private instance in your company’s
data center, or as small as a local installation on your own workstation. This makes
for a very convenient platform for evaluating, learning, and testing OpenShift-based
workloads. Skills developed on a local instance are transferable to more complex dis‐
tributed topologies.

The easiest way to get started is to visit the OpenShift website and register for a free
developer account. This will suffice for many of the examples covered in this book.
Once registered, you can log in and you are good to go!

Another option is to use a local OpenShift all-in-one cluster on your own worksta‐
tion. This is a fully functioning OpenShift instance with an integrated Docker regis‐
try, OpenShift master, and node. It can support both the upstream OpenShift Origin
and OpenShift Container Platform versions. The aim of this feature is to allow web
developers and other interested parties to run OpenShift V3 on their own computer.
The cluster will be routable from your local system so you can treat it like a hosted
version of OpenShift and can view the URLs you create.

As your own private instance, you can create as many projects as you like, push and
pull to your registry, create local persistent volumes, and have cluster admin access.
Here we will document building this using the oc cluster up command.

Software Requirements
The oc cluster up command starts a local OpenShift all-in-one cluster with a con‐
figured registry, router, image streams, and default templates. By default, the com‐
mand requires a working Docker connection. However, if running in an environment
with Docker Machine installed, it can create a Docker machine for you.

7

https://www.openshift.com

The oc cluster up command will create a default user and project, and once it com‐
pletes will allow you to start using the command line to create and deploy apps with
commands like oc new-app, oc new-build, and oc run. It will also print out a URL
to access the management console for your cluster.

So let’s get started. We are going to install the latest OpenShift client tools, install
Docker, and then start a local cluster instance.

The all-in-one cluster uses xip.io to provide DNS resolution with
application URLs. The advantage of this is that you actually get
routable URLs to your local machine without browser or separate
DNS configuration steps. The drawback is that you need to be
online whenever you use the cluster and xip.io may be blocked by
your company’s firewalls. Verify xip.io accessibility using a com‐
mand such as nslookup and check that it can return an address in
the non-authoritative answer section:

$ nslookup x.127.0.0.1.xip.io
Server: 61.9.195.193
Address: 61.9.195.193#53

Non-authoritative answer:
Name: x.127.0.0.1.xip.io
Address: 127.0.0.1

Install OpenShift oc Client Tools
OpenShift 3 allows you to work using a command-line interface (CLI), web console,
or via the Eclipse IDE using the latest JBoss tools. The CLI tool is known as oc and is
what we will use in most cases. It’s a single Go executable, so installation is simply a
matter of downloading the tool and adding it to your PATH. Choose the latest, stable
release from https://github.com/openshift/origin/releases, select the download that
matches your operating system environment, update your PATH, and you are good to
go.

For example, if I extracted the contents to the CLI directory in my home directory, I
would issue the following command in both Linux and macOS to update the PATH
and then verify success:

$ export PATH=$PATH:~/cli/

$ oc version
oc v1.4.1+3f9807a
kubernetes v1.4.0+776c994
features: Basic-Auth

Server https://127.0.0.1:8443

8 | Chapter 2: Installing the All-In-One OpenShift

https://github.com/openshift/origin/releases

openshift v1.4.0-rc1+b4e0954
kubernetes v1.4.0+776c994

What version of OpenShift is that? The output from the oc
version command indicates that we have downloaded v1.4.1 of the
OpenShift Origin client tools. This means that when we come to
launch our local instance using oc cluster up, v1.4.1 of Open‐
Shift Origin distribution will be pulled down.

For Windows users, the specific details for updating your PATH varies slightly
between releases. Using Windows 10, right-click the bottom lefthand corner to raise
the Power User task menu, then click System, Advanced System Settings, and finally,
select Environment Variables. Once the dialog opens, select the Path variable and add
“;C:\CLI” at the end (ensure you replace “C:\CLI” with the location of where you
extracted the tool). You could also just copy it to C:\Windows or a directory you
know is already on your path.

Install Docker
The oc cluster up command looks for a working Docker connection. The installa‐
tion and configuration instructions for Linux, macOS, and Windows environments
are covered in the documentation website for Local Cluster Management. Refer to the
website for configuration instructions for your environment, but take note of the
requirement to configure for an insecure registry parameter of 172.30.0.0/16 in each
case. If using Docker for Mac or Docker for Windows, you configure this setting
from the Preferences GUI. Once installed, verify Docker is functioning before pro‐
ceeding. For this book, Docker version 1.13.0 was used. Note that if you will be
attempting more memory-intensive use cases, increase the assigned memory for
Docker:

$ docker version
Client:
 Version: 1.13.0
 API version: 1.25
...

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
78445dd45222: Pull complete
Digest: sha256:c5515758d4c5e1e838e9cd307f6c6a0d620b5e07e6f927b07d05f6d12a1ac8d7
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.
...

Software Requirements | 9

https://github.com/openshift/origin/blob/master/docs/cluster_up_down.md

Docker for Windows is available for Windows 10 and Windows
Server 2016. If you are running earlier versions, then go for the
Vagrant self-contained OpenShift.

Launch OpenShift
With Docker and the oc tools installed and verified, we are ready to launch Open‐
Shift! The oc cluster command accepts various switches, but two we will take spe‐
cial note of are the host-data-dir and host-config-dir parameters. These allow
you to specify a location for storing OpenShift cluster system state. Doing so enables
you to set up named “profiles” for separate cluster instances within the same worksta‐
tion that you can return to later. For the first invocation do something like below,
replacing $HOME to reflect your environment and $PROFILE to, for example, “DevOps‐
WithOpenShift”. This first attempt may take a few minutes as it downloads the Open‐
Shift distribution. Make note of the URL for the server as we will be referring to that
later.

$ oc cluster up \
 --host-data-dir='$HOME/oc/profiles/$PROFILE/data' \
 --host-config-dir='$HOME/oc/profiles/$PROFILE/config'

-- Checking OpenShift client ... OK
-- Checking Docker client ... OK
-- Checking Docker version ... OK
-- Checking for existing OpenShift container ... OK
-- Checking for openshift/origin:v1.4.1 image ...
 Pulling image openshift/origin:v1.4.1
 Pulled 1/3 layers, 41% complete
 Pulled 2/3 layers, 76% complete
 Pulled 3/3 layers, 100% complete
 Extracting
 Image pull complete
...
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.99.100:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

The profile feature described is available when using a native Docker service (e.g.,
Docker for Mac or Docker for Windows). Environments using Docker Toolbox

10 | Chapter 2: Installing the All-In-One OpenShift

https://www.openshift.org/vm/
https://www.openshift.org/vm/

would pass the --create-machine switch instead at first-time launch in order to cre‐
ate a Docker virtual machine driver.

By default, oc cluster up will pull down from the upstream
OpenShift Origin repository, v1.4.1 in this case. To point to a spe‐
cific enterprise image, and version, add the --image and --version
switches to the cluster up invocation. For example, adding
--image=registry.access.redhat.com/openshift3/ose and
--version=v3.4 will launch using OpenShift Container Platform
V3.4.

Windows users can launch the equivalent instruction on Power‐
Shell, albeit using the ^ character for command-line continuation.
Linux and macOS users can also consider passing an additional
parameter --public-hostname=127.0.0.1 to ensure an OpenShift
server on 127.0.0.1:8443.

Now let’s restart the OpenShift cluster using the use-existing-config parameter
and point to the saved named profile:

$ oc cluster down

$ oc cluster up \
 --host-data-dir='$HOME/oc/profiles/$PROFILE/data' \
 --host-config-dir='$HOME/oc/profiles/$PROFILE/config' \
 --use-existing-config

...

The oc cluster command supports many switches. There are var‐
ious open source projects that have built convenience wrappers and
tools to simplfy usage. Some of these include Minishift and oc-
cluster-wrapper.

Verify Your Environment
Let’s now check that we are good to go by logging in using the CLI. We will then ver‐
ify our installation by creating an application.

Log In Using the Command Line
$ oc login -u developer -p developer
Login successful.

You have one project on this server: "myproject"

Verify Your Environment | 11

https://github.com/minishift/minishift
https://github.com/openshift-evangelists/oc-cluster-wrapper
https://github.com/openshift-evangelists/oc-cluster-wrapper

Using project "myproject".

$ oc project myproject
Already on project "myproject" on server "https://127.0.0.1:8443".

$ oc new-app --name='cotd' --labels name='cotd' php~https://github.com/devops-
with-openshift/cotd.git -e SELECTOR=cats
--> Found image 1875070 (10 days old) in image stream "openshift/php" under tag
"5.6" for "php"

 Apache 2.4 with PHP 5.6

 Platform for building and running PHP 5.6 applications

 Tags: builder, php, php56, rh-php56

 * A source build using source code from https://github.com/devops-with-
openshift/cotd.git will be created
 * The resulting image will be pushed to image stream "cotd:latest"
 * Use 'start-build' to trigger a new build
 * This image will be deployed in deployment config "cotd"
 * Port 8080/tcp will be load balanced by service "cotd"
 * Other containers can access this service through the hostname "cotd"

--> Creating resources with label name=cotd ...
 imagestream "cotd" created
 buildconfig "cotd" created
 deploymentconfig "cotd" created
 service "cotd" created
--> Success
 Build scheduled, use 'oc logs -f bc/cotd' to track its progress.
 Run 'oc status' to view your app.

$ oc expose service cotd
route "cotd" exposed

Windows users with Docker for Windows installed should invoke
the cluster up and cluster down command from PowerShell.
Some of the labs to follow may describe Linux/Bash-style
command-line operations. Windows users can reproduce such
instructions using Bash for Windows or an equivalent.

Log In from Console
The console can be accessed using the OpenShift server console URL as displayed
during the launch output (https://127.0.0.1:8443/console/). Log in using “developer” as
the username and “developer” as the password. Then visit “My Project” to check the
application you just created using the CLI (Figure 2-1).

12 | Chapter 2: Installing the All-In-One OpenShift

Figure 2-1. My project with COTD application

Click the route link as displayed in your console—for example, http://cotd-myproject.
127.0.0.1.xip.io. If all is functioning correctly you should see something like
Figure 2-2.

While you are test-driving your brand-new, all-in-one cluster, why
not check out the profile feature? Just shut down your running
cluster and restart using a different profile name. Then toggle
between the different profiles to verify system state is preserved
within each profile, and restart. System configuration for each pro‐
file will be located as specified in your --host-data-dir and
--host-config-dir launch runtime switches.

Verify Your Environment | 13

Figure 2-2. Cats!

Working with Storage
For some of the labs to follow you may wish to attach storage to your container run‐
ning in your local cluster instance. The approach described is valid for a cluster
instance launched using a native Docker service (i.e., not using the --create-
machine switch). To do so using the oc CLI, follow these steps:

1. Create a persistent volume (pv).
2. Set up the volume claim and assign to a deploymentConfig.

Create a Persistent Volume
To create a persistent volume (pv), you need to log in as the cluster admin user and
issue the following instruction, replacing $VOLUMENAME, $VOLUMESIZE, and $VOLUME
PATH to reflect your environment—for example, sample settings could be myvolume,
1Gi, and /tmp/myvolume (a complete review of available configuration options can be
found in the documentation):

14 | Chapter 2: Installing the All-In-One OpenShift

http://red.ht/2nc8KYx

$ oc login -u system:admin

$ oc create -f - << EOF!
apiVersion: v1
kind: PersistentVolume
metadata:
 name: $VOLUMENAME
spec:
 capacity:
 storage: $VOLUMESIZE
 accessModes:
 - ReadWriteOnce
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Recycle
 hostPath:
 path: $VOLUMEPATH
EOF!
persistentvolume "myvolume" created

The host path ($VOLUMEPATH) needs to be shared to Docker and
expressed using a POSIX-style path convention. If using Docker for
Mac or Docker for Windows, visit the Docker Preferences to
update the sharing settings. In Windows, $VOLUMEPATH would take
the form C/path/to/directory.

You may be wondering what those “access modes” are. The Kuber‐
netes documentation summarizes this as RWO (ReadWriteOnce),
the volume can be mounted as read-write by a single node; ROX
(ReadOnlyMany), the volume can be mounted read-only by many
nodes; and RWX (ReadWriteMany), the volume can be mounted as
read-write by many nodes.

Set Up the Volume Claim
You can create a persistent volume claim (PVC) and assign it to a deploymentConfig
in a single operation using the oc volume. Assuming you have created an application
called “cotd” inside project “myproject”, then you would issue an instruction similar
to below. Replace $VOLUMECLAIMNAME, $VOLUMECLAIMSIZE, $MOUNTPATH, and $VOLUME
NAME to reflect your environment. Sample settings could be myvolumeclaim, 100Mi,
and /opt/app-root/src/data. Note that in this instance, the $MOUNTPATH denotes the
path inside your container:

$ oc login -u developer -p developer

$ oc project myproject

$ oc volume dc/cotd --add \
 --name=images

Working with Storage | 15

http://bit.ly/2oDjyz5
http://bit.ly/2oDjyz5

 --type=persistentVolumeClaim \
 --mount-path=/opt/app-root/src/data/images \
 --claim-name=$VOLUMECLAIMNAME \
 --claim-size=$VOLUMECLAIMSIZE \
 --mount-path=$MOUNTPATH \
 --containers=cotd \
 --overwrite
persistentvolumeclaims/myvolumeclaim
deploymentconfig "cotd" updated

Creating a PVC and attaching that claim to your deployment con‐
figuration can also be completed using the OpenShift Console. For
PVC creation, look for the “Storage” option in the left margin of
the Project menu. Similarly, “Attach Storage” can be found in the
Actions drop-down list, accessible from the Applications →
“Deployments left-margin” menu option.

Create a GitHub Account
Similar to the approach taken with OpenShift for Developers, you will be cloning and
forking Git repositories for some of the labs in this book. If you don’t have one
already, go and create a GitHub account at https://github.com.

Alternative Form Factors
As noted, the same OpenShift codebase can take on many form factors. We have
spent some time here describing an oc cluster up setup. This offers the conve‐
nience of a local instance you own and control including system:admin cluster
authority. Project resources are only as limited by your own system capacity. We also
mentioned other local installation types you might wish to explore such as Minishift.
In either case, given its focus on application developers, these OpenShift installation
types should not be used in production. You can also experiment with other options
such as installing your own OpenShift cluster as described at the documentation site.
And for those exercises not requiring OpenShift administration access, you are
encouraged to register and avail yourself of the OpenShift Online (V3) Cloud service
which provides a running, ready-to-use development platform.

Summary
In this chapter, we set up your local machine so you have a working instance of
OpenShift running and ready to interact with. We have focused on the oc cluster
up technique, but you are welcome to use any of the alternatives mentioned. You are
going to find the profile feature very handy as you play around with the labs to come.
So now it’s ready, set, code!

16 | Chapter 2: Installing the All-In-One OpenShift

https://github.com
https://github.com/minishift/minishift
https://docs.openshift.com
https://www.openshift.com

CHAPTER 3

Deployments

A completely automated deployment process is a must in modern software environ‐
ments. The time between when software is written and tested till it is deployed into
production (so it can realize its business value) makes up a software delivery lifecycle
that should be as quick and smooth as your organizational processes will allow.

This ability to rapidly deploy software into production safely is behind the continu‐
ous delivery movement. Minimizing downtime while this software change occurs is a
key concern. In this chapter you are going to learn some of the common approaches
to deployment using OpenShift.

The Replication Controller
A deployment in OpenShift is a replication controller based on a user-defined tem‐
plate called a deployment configuration. Deployments are created manually or in
response to triggered events. OpenShift provides:

• A deployment configuration, which is a template for deployments
• Triggers that drive automated deployments in response to events
• User-customizable strategies to transition from the previous deployment to the

new deployment
• Rollback to a previous deployment
• Replication scaling (manual and automated)

17

If you don’t think you need any of these deployment benefits, you
can always spin up a replication controller or pod definition on
OpenShift without having a deployment configuration at all.

Deployment Strategies
OpenShift provides deployment strategies that are defined by each deployment con‐
figuration. Each application will have its own requirements for availability and quality
of service during a deployment. Architectural consideration should be made at design
and development time for applications to take into account state (e.g., session state,
atomic data—that is, what is the source of truth) and its effects on the quality of busi‐
ness service during updates to the application. For example, an application server that
clusters server-side session state will have different concerns than a stateless applica‐
tion that relies on client-side caching only.

OpenShift provides strategies to support a variety of deployment scenarios, which we
will cover in the following sections.

Rolling
The rolling strategy is the default strategy used if no strategy is specified on a deploy‐
ment configuration. The rolling strategy performs a rolling update and supports life‐
cycle hooks for injecting code into the deployment process.

The rolling strategy will:

• Execute any pre lifecycle hook
• Scale up the new deployment based on the surge configuration
• Scale down the old deployment based on the max unavailable configuration
• Repeat this scaling until the new deployment has reached the desired replica

count and the old deployment has been scaled to zero
• Execute any post lifecycle hook

When scaling down, the rolling strategy waits for pods to become
ready so it can decide whether further scaling would affect availa‐
bility. If scaled-up pods never become ready, the deployment will
eventually time out and result in a deployment failure.

18 | Chapter 3: Deployments

Let’s try this out using our welcome busybox image example. When using oc new-
app against a Docker image, OpenShift will create a deployment configuration of type
rolling by default:

$ oc login -u developer -p developer
$ oc new-project welcome --display-name="Welcome" --description="Welcome"
$ oc new-app devopswithopenshift/welcome:latest --name=myapp
$ oc set probe dc myapp --readiness --open-tcp=8080 \
 --initial-delay-seconds=5 --timeout-seconds=5
$ oc set probe dc myapp --liveness -- echo ok
$ oc expose svc myapp --name=welcome

If we look at the deployment configuration we can see the rolling deployment strat‐
egy as well as the other details about the deployment:

$ oc describe dc myapp
...
Replicas: 1
Triggers: Config, Image(myapp@latest, auto=true)
Strategy: Rolling
...

Triggers
Two triggers were added to our deployment: a ConfigChange and ImageChange trig‐
ger. This means that every time we update the deployment configuration or deploy a
new image, an event is generated that triggers a new deployment.

If a ConfigChange trigger is defined on a deployment configuration, the first replica‐
tion controller is created soon after the deployment configuration itself. If no triggers
are defined on a deployment configuration, a manual deployment will be needed. We
can manually trigger our deployment in the web-ui or by typing:

$ oc deploy myapp --latest

If we watch the deployment in the web-ui, we can see that the old pod is not stopped
and removed until the new pod deployment has successfully passed our defined
liveness and readiness health check probes. It is crucial for correct deployment behav‐
ior that we set them appropriately for each application (Figure 3-1).

Deployment Strategies | 19

Figure 3-1. Rolling strategy on deployment

We can test the HTTP response of our application during a deployment, which
should show all HTTP 200 OK responses while our deployment runs. In a separate
shell, run the following command (replace the welcome route URL/IP address to suit
your environment):

$ while true; do curl -I http://welcome-welcome.192.168.137.3.xip.io/ \
 2>/dev/null | head -n 1 | cut -d$' ' -f2; sleep 1; done
200
200
...

It is also possible to cancel and retry deployments using the cancel and retry flags (see
oc deploy -h for details). To see the triggers on any deployment configuration, the
following commands can be used:

$ oc set triggers dc myapp
NAME TYPE VALUE AUTO
deploymentconfigs/myapp config true
deploymentconfigs/myapp image myapp:latest (myapp) true

We can easily manipulate triggers through the command-line interface. We can turn
off all the triggers:

$ oc set triggers dc myapp --remove-all

The terminology is a bit confusing, because the config trigger is still there, just dis‐
abled (the AUTO flag is set to false). The image-based trigger has been removed.

$ oc set triggers dc myapp
NAME TYPE VALUE AUTO
deploymentconfigs/myapp config false

We could also have disabled just the config change trigger by itself:

$ oc set triggers dc myapp --from-config --remove

20 | Chapter 3: Deployments

Let’s re-enable just the config change trigger:

$ oc set triggers dc myapp --from-config

We can create triggers from image change events so that if a new image stream
becomes available we can trigger a new deployment. Let’s create an image change
trigger for the base busybox image stream and add back our myapp ImageChange trig‐
ger we removed earlier:

import image stream into our namespace
$ oc import-image docker.io/busybox:latest --confirm

Add an image trigger to a deployment config
$ oc set triggers dc myapp --from-image=welcome/busybox:latest \
 --containers=myapp

Add our myapp image trigger back as well
$ oc set triggers dc myapp --from-image=welcome/myapp:latest \
 --containers=myapp

$ oc set triggers dc myapp
NAME TYPE VALUE AUTO
deploymentconfigs/myapp config true
deploymentconfigs/myapp image busybox:latest (myapp) true
deploymentconfigs/myapp image myapp:latest (myapp) true

Recreate
The Recreate strategy has basic rollout behavior and supports lifecycle hooks for
injecting code into the deployment process.

The Recreate strategy will:

• Execute any pre lifecycle hook
• Scale down the previous deployment to zero
• Execute any mid lifecycle hook
• Scale up the new deployment
• Execute any post lifecycle hook

Using the previous example, we can change the strategy from its default to a Recreate
strategy using the patch command:

$ oc delete project welcome
$ oc new-project welcome --display-name="Welcome" --description="Welcome"
$ oc new-app devopswithopenshift/welcome:latest --name=myapp
$ oc patch dc myapp -p '{"spec":{"strategy":{"type":"Recreate"}}}'
$ oc set probe dc myapp --readiness --open-tcp=8080 \
 --initial-delay-seconds=5 --timeout-seconds=5

Deployment Strategies | 21

$ oc set probe dc myapp --liveness -- echo ok
$ oc expose svc myapp --name=welcome

If we force a new deployment:

$ oc deploy myapp --latest

The old pod is scaled down, and a new pod deployment proceeds.

Custom
The Custom strategy allows you to provide your own deployment behavior. This
could be based on a custom image and configuration that you define. The replica
count of the new deployment will initially be zero. The responsibility of the strategy is
to make the new deployment active using the logic that best serves the needs of the
user.

There isn’t any custom deployment behavior, but this is how you might invoke such
behavior—overriding the deployment image, command, and argument, for example:

$ oc patch dc myapp \
 -p '{"spec":{"strategy":{"type":"Custom",
 "customParams":{"image":"devopswithopenshift/welcome:latest",
 "command":["/bin/echo","a custom deployment command argument"]}}}}'

In this case we simply call /bin/echo, which exists with a zero success status on
deployment. The documentation for this strategy provides further information.

Lifecycle Hooks
The recreate and rolling strategies support lifecycle hooks that allow behavior to be
injected into the deployment process at predefined points within the strategy. We are
going to use OpenShift pre- and post- exec hooks in a worked example.

Hooks have a type-specific field that describes how to execute the hook. Currently,
pod-based hooks are the only supported hook type, specified by the execNewPod field.

• The pre-deployment hook is executed just before the new image is deployed.
• The mid-deployment hook (Recreate strategy only) is executed after all instances

of your old image are shut down.
• The post-deployment hook is executed just after the new image is deployed.

OpenShift will spin-up an extra instance of your built image, execute your hook
script(s), and then shut the instance down.

22 | Chapter 3: Deployments

http://red.ht/2p2FoIo

Database Example

Persistent volumes (PVs) are used in this example. We touched on
these in Chapter 2. If the persistent volume claims (PVCs) that get
created are not Bound, check the STATUS by calling oc get pvc.
Ensure you have created PVs and check that the AccessMode of
your PVC matches the PV (e.g., RWO, RWX). If you are not famil‐
iar with persistent volumes, check out the documentation.
Generally speaking, the rolling deployment strategy should not be
used with databases. Generally, database corruption could occur if
two instances of the database are running at the same time on the
same database files.
The use of RWX volumes should always be used with a rolling
deployment strategy; otherwise, multipod, multinode deployments
may fail.

In the example that follows, we are going to create a Postgres database schema and
load the default data using Liquibase change sets. If you haven’t come across this
library before, there are alternative database migration libraries such as Flyway that
may be familiar.

We use two containers in the example:

• The database configuration is supplied by the dbinit container. Configuration (via
liquibase) is layered into the Docker image at /deployments. The change set
records are exported to an XML file on a PVC as the last (post- hook) step.

• A Postgres database container.

By using two containers we can keep the database runtime and its configuration sepa‐
rate. Liquibase change sets allow the example to be rerun multiple times as the same
change set will not be applied twice. Another spin on this example is to execute a pre
lifecycle hook to initialize the database and a mid lifecycle hook to perform the data‐
base schema changes.

The example creates a schema called test in a Postgres database. The schema genera‐
tion uses annotated SQL scripts for data loading. The deployment hooks commands
are specified in the JSON template file. If you examine the template file, you will see
that the Postgres database connection for Liquibase is specified using environment
variables.

Create a Postgres database on OpenShift using a template and set a Recreate deploy‐
ment strategy:

$ oc new-project postgres --display-name="postgres" --description="postgres"
$ oc create -f https://raw.githubusercontent.com/openshift/openshift-ansible/

Deployment Strategies | 23

http://red.ht/2obwqeK
http://www.liquibase.org/bestpractices.html
https://github.com/flyway

master/roles/openshift_examples/files/examples/v1.4/db-templates/postgresql-
persistent-template.json
$ oc new-app --template=postgresql-persistent \
 -p POSTGRESQL_USER=user \
 -p POSTGRESQL_PASSWORD=password \
 -p POSTGRESQL_DATABASE=test
$ oc patch dc postgresql -p '{"spec":{"strategy":{"type":"Recreate"}}}'
$ oc set env dc postgresql POSTGRESQL_ADMIN_PASSWORD=password

Once deployed and running, you should see output similar to:

$ oc get pods
NAME READY STATUS RESTARTS AGE
postgresql-2-o662j 1/1 Running 0 5m

Log in to the test database as follows:

$ oc rsh $(oc get pods -lapp=postgresql-persistent -o name)
$ psql -h localhost -d test -U postgres
psql (9.5.4)
Type "help" for help.
test=#

Using Postgres commands, let’s show tables \dt+ and list schemas \dn. You should see
the following:

test=# \dt+
No relations found.

test=# \dn
 List of schemas
 Name | Owner
--------+----------
 public | postgres
(1 row)

Enter Ctrl-D, Ctrl-D (or type \q, exit) to quit.

We are going to use an application template to create the database initializer pod that
uses Liquibase change sets.

See the product documentation on application templates and how
you create them at http://red.ht/2nYVBil.

The schema creation and data load occur in the deployment pre-hook. We generate
an XML representation of the changelog table using the post-deployment hook and
store that on a persistent volume:

$ oc create -f https://raw.githubusercontent.com/devops-with-openshift/
liquibase-example/master/dbinit-data-pvc.yaml

24 | Chapter 3: Deployments

http://red.ht/2nYVBil

$ oc new-app --name=dbinit --strategy=docker \
 https://github.com/devops-with-openshift/liquibase-example.git
we delete the generated deployment config
$ oc delete dc dbinit
and recreate our deployment config with our own hooks defined
$ oc process \
 -f https://raw.githubusercontent.com/devops-with-openshift/liquibase-
example/master/dbinit-deployment-config.json \
 -v="IMAGE_STREAM=$(oc export is dbinit --template='{{range .spec.tags}}
{{.from.name}}{{end}}')" \
 | oc create -f -
trigger a deployment
$ oc deploy dbinit --latest

You may track the progress using:

$ oc logs -f dc dbinit
--> pre: Running hook pod ...
DEBUG 2/2/17 10:33 AM: liquibase: Connected to user@jdbc:postgresql://
172.30.161.12:5432/test
...

Once the dbinit pod runs, you should see successful Monitoring events for the
deployment hooks when the db-init pod starts:

$ oc get events | grep dbinit
...
8:26:23 AM dbinit Deployment Config Normal Started Running pre-
hook ("sh -c cd /deployments && ./liquibase --defaultSchemaName=public --
url=jdbc:postgresql://${POSTGRESQL_SERVICE_HOST:-127.0.0.1}:5432/test --
driver=org.postgresql.Driver update -Dauthor=mike -Dschema=MY_SCHEMA") for
deployment postgres/dbinit-1
...
8:26:47 AM dbinit Deployment Config Normal Started Running post-
hook ("sh -c rm -f /data/baseline.xml && cd /deployments && ./liquibase --
defaultSchemaName=my_schema --changeLogFile=/data/baseline.xml --
url=jdbc:postgresql://${POSTGRESQL_SERVICE_HOST:-127.0.0.1}:5432/test --
driver=org.postgresql.Driver generateChangeLog") for deployment postgres/
dbinit-1
...

From the database login shell, we can also see tables and data created in the database
itself:

test=# \dt+
 List of relations
 Schema | Name | Type | Owner | Size | Description
--------+-----------------------+-------+-------+------------+-------------
 public | databasechangelog | table | user | 16 kB |
 public | databasechangeloglock | table | user | 8192 bytes |
(2 rows)

test=# \dt my_schema.*
 List of relations

Deployment Strategies | 25

 Schema | Name | Type | Owner
-----------+--------------------+-------+-------
 my_schema | airlines | table | user
 my_schema | cities | table | user
 my_schema | countries | table | user
 my_schema | flightavailability | table | user
 my_schema | flights | table | user
 my_schema | flights_history | table | user
 my_schema | maps | table | user
 my_schema | qa_only | table | user
 my_schema | schema_only | table | user
(9 rows)

test=# select count(*) from public.databasechangelog;
 count

 30
(1 row)

test=# select count(*) from my_schema.cities;
 count

 87
(1 row)

Back in your shell, we can copy the change set XML generated by post-hook deploy‐
ment:

$ oc rsync $(oc get pods -lapp=dbinit --template='{{range .items}}{{.meta
data.name}}{{end}}'):/data/baseline.xml .

You should now have a local copy in your directory of the baseline.xml file that con‐
tains the database schema change sets generated by the deployment. The file can be
stored for reference and later used against other database environments to apply the
same schema changes.

Deployment Pod Resources
A deployment is completed by a pod that consumes resources (memory and CPU) on
a node. By default, pods consume unbounded node resources. However, if a project
specifies default container limits, then pods consume resources up to those limits.
Another way to limit resource use is to (optionally) specify resource limits as part of
the deployment strategy.

In the busybox welcome app example we looked at earlier, if we wished to limit the
CPU to 100 millicores (0.1 CPU units) and memory to 256Mi (256*2^20 bytes), we
can specify the resource limit in the deployment config:

$ oc patch -n welcome --type=strategic dc myapp \
 -p '{"spec":{"template":{"spec":{"containers":[{"name":"myapp","resources":
{"limits":{"cpu":"100m","memory":"256Mi"}}}]}}}}'

26 | Chapter 3: Deployments

When looking at the deployment in the web-ui or from the command line, the limits
will be displayed for the pod (Figure 3-2).

Figure 3-2. Pod resource limits

OpenShift enforces these by using CGroup CPU quota and memory limits in the ker‐
nel. More information on deployment pod resources can be found in the product
documentation.

We cover project quotas, limits, and container resources in more detail in Chapter 7.

Blue-Green Deployments
The blue-green deployment strategy minimizes the time it takes to perform a deploy‐
ment cutover by ensuring you have two versions of your application stacks available
during the deployment (Figure 3-3). We can make use of the service and routing tiers
to easily switch between our two running application stacks—hence it is very simple
and fast to perform a rollback.

Figure 3-3. Blue-green deployments

Let’s deploy both our blue and green applications into the same project and point the
bluegreen route to the blue service (Figure 3-4):

$ oc new-project bluegreen --display-name="Blue Green Deployments" \
 --description="Blue Green Deployments"
$ oc new-app https://github.com/devops-with-openshift/bluegreen#master \
 --name=blue
$ oc expose service blue --name=bluegreen
$ oc new-app https://github.com/devops-with-openshift/bluegreen#green \
 --name=green

Blue-Green Deployments | 27

http://red.ht/2p2q3Ye
http://red.ht/2p2q3Ye

Figure 3-4. Green deployment

We can easily switch the bluegreen route to point to either the blue or the green ser‐
vice using the web-ui or the command line:

switch service to green
$ oc patch route/bluegreen -p '{"spec":{"to":{"name":"green"}}}'

switch back to blue again
$ oc patch route/bluegreen -p '{"spec":{"to":{"name":"blue"}}}'

In a stateless application architecture, blue-green deployments can be fairly easy to
achieve as you do not have to worry about:

• Long-running transactions in the original blue stack
• Data stores that need to be migrated or rolled back alongside the application

A/B Deployments
A/B deployments get their name from the ability to test the new application features
as part of the deployment. This way you can create a hypothesis, perform an A/B
deployment, test whether your hypothesis is true or false, and either roll back to your
initial application state (A) or proceed with your new application state (B).

28 | Chapter 3: Deployments

A great example is rolling out a change to your sales website or mobile application.
You direct a percentage of the traffic to the new version and measure the number of
sales by version (conversion rate based on the number of visitors, say). You can then
roll back or forward depending on which has the higher conversion rate (Figure 3-5).

Figure 3-5. A/B testing

We can make use of the OpenShift routing tier to achieve an A/B deployment
(Figure 3-6).

Figure 3-6. A/B deployment

Let’s create our application A version using our Cat of the Day application:

$ oc new-project cotd --display-name='A/B Deployment Example' \
 --description='A/B Deployment Example'
$ oc new-app --name='cats' -l name='cats' \
 php:5.6~https://github.com/devops-with-openshift/cotd.git \
 -e SELECTOR=cats
$ oc expose service cats --name=cats -l name='cats'

Let’s create our application B version using our City of the Day application:

$ oc new-app --name='city' -l name='city' \
 php:5.6~https://github.com/devops-with-openshift/cotd.git \

A/B Deployments | 29

 -e SELECTOR=cities
$ oc expose service city --name=city -l name='city'

We also need to override the default least connection balance setting of HAProxy
using an annotation so that we use round-robin and the weightings specified in our
route-backends command instead:

$ oc expose service cats --name='ab' -l name='ab'
$ oc annotate route/ab haproxy.router.openshift.io/balance=roundrobin
$ oc set route-backends ab cats=100 city=0

If we browse to the ab route we should see Cats. Let’s use the OpenShift set route-
backends command to adjust the weighting through our routing tier so that 10% of
the traffic now goes to the City version. We can test hitting the web page 10 times
using the curl command. The output shows part of the image location in the HTML
page, and we can see one 1 out of 10 calls (i.e., 10%) goes to the City version (remem‐
ber to replace the hostname in the URL with the appropriate name in your environ‐
ment):

$ oc set route-backends ab --adjust city=+10%

$ for i in {1..10}; do curl -s http://ab-cotd.192.168.137.3.xip.io/item.php |
grep "data/.*/images" | awk '{print $5}'; done
 data/cats/images/adelaide.jpg);"
 data/cats/images/adelaide.jpg);"
 data/cats/images/adelaide.jpg);"
 data/cats/images/adelaide.jpg);"
 data/cats/images/adelaide.jpg);"
 data/cats/images/adelaide.jpg);"
 data/cats/images/adelaide.jpg);"
 data/cats/images/adelaide.jpg);"
 data/cities/images/adelaide.jpg);"
 data/cats/images/adelaide.jpg);"

The default configuration of the HAProxy is to support sticky sessions using an
HAProxy client-side cookie. If you were to mimic a web browser that supports cook‐
ies with curl (e.g., specify the --cookie option), you would only see cats or cities due
to the sticky session behavior.

After time, we can measure who likes the most cities or cats based on user feedback
logged to both applications. We can use the oc logs -f <name of pod> command to
see each application’s logs:

$ oc logs -f $(oc get pods -l name=cats -o name) | grep COTD
...
{"auckland" : "4"}

$ oc logs -f $(oc get pods -l name=city -o name) | grep COTD
...
{"sydney" : "3"}, {"wellington" : "5"}

30 | Chapter 3: Deployments

and if we are happy that more users like cities than cats, we can route all our traffic to
the B/city version of our application (Figure 3-7):

$ oc set route-backends ab cats=0 city=100

Which we can see if we look at the Traffic bar in the web-ui:

Figure 3-7. All traffic going to (B) cities

Of course in production we are likely to automate the measurement and API calls to
set the route weights.

Canary Deployments
A canary deployment is a technique similar to A/B where you slowly roll out the
change to a small subset of users before rolling it out to the entire infrastructure and
make it available to everybody.

If we look at the A/B example, we can see there are three routes exposed:

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION
ab ab-cotd.192.168.137.3.xip.io cats(100%),city(0%) 8080-tcp
cats cats-cotd.192.168.137.3.xip.io cats 8080-tcp
city city-cotd.192.168.137.3.xip.io city 8080-tcp

We can make use of these to affect a canary deployment strategy:

• One simple strategy is to use a random sample of users for our new version—this
is the A/B strategy.

• We could deploy the new version available to internal testers only before releas‐
ing to production by directing them to the City route for testing.

Canary Deployments | 31

• Use a testing project as a canary—and only promote the change once our tests
have passed.

• A more sophisticated approach is to choose users based on their profile and other
demographics.

As a cluster admin, you may also take advantage of advanced techniques such as cus‐
tomizing the HAProxy router template configuration.

By following the product documentation, you could use custom access control lists
(ACLs) to restrict access to our canary route. You do not need to do this now, but
here is an example piece of an haproxy-config.template that blocks users not in our
network subnet from accessing our city route:

frontend public

 # Custom acl
 # block users not in 192.168.137.0/24 network from accessing city host
 acl network_allowed src 192.168.137.0/24
 acl host_city hdr(host) -i city-cotd.192.168.137.3.xip.io
 acl restricted_page path_beg /
 http-request deny if restricted_page host_city !network_allowed

Rollbacks
Rollbacks revert an application back to a previous revision. Blue-green and A/B
deployments have inherent rollback capabilities built into them due to both the old
and new application versions being available in your environment at the same time.

OpenShift allows you to perform rollbacks on the deployment configuration using
the REST API, the CLI, or the web console. Let’s use our City/Cats of the Day exam‐
ple to demonstrate a simple rollback of our configuration:

$ oc new-project rollback --display-name='Rollback Deployment Example' \
 --description='Rollback Deployment Example'
$ oc new-app --name='cotd' \
 -l name='cotd' php:5.6~https://github.com/devops-with-openshift/cotd.git \
 -e SELECTOR=cats
$ oc expose service cotd --name=cotd -l name='cotd'

This will deploy our application with the environment variable SELECTOR set to cats.
In the web-ui or from the CLI, we can change the environment variable in our
deployment configuration to cities, which will trigger a new deployment displaying
cities instead of cats:

$ oc env dc cotd SELECTOR=cities

Let’s see what a rollback to revision 1 of our deployment will look like, but don’t per‐
form the rollback:

32 | Chapter 3: Deployments

http://red.ht/2nLzFq5

$ oc rollback cotd --to-version=1 --dry-run
...
 Environment Variables:
 SELECTOR: cats
...

We can see the rollback would revert the environment variable SELECTOR back to cats.
If no revision is specified with --to-version, then the last successfully deployed revi‐
sion will be used.

Image change triggers on the deployment configuration are dis‐
abled as part of the rollback to prevent accidentally starting a new
deployment process soon after the rollback is complete.

Now perform the rollback, which will trigger a new deployment. There is also a roll‐
back button with settings options available in the web-ui on each numbered deploy‐
ment to initiate a rollback (Figure 3-8):

$ oc rollback cotd --to-version=1

Re-enable the image change triggers:

$ oc set triggers dc cotd --auto

If we now browse to the application URL, we will see cats instead of cities, rolling
back our environment variable change. We can also see deployment information in
the web-ui or CLI to help us perform rollbacks (or rollforwards!) using:

$ oc describe dc cotd

If you build a new version of your application, a new deployment will occur as long as
the image change trigger is enabled. When rolling back deployment configuration
revisions you may also be rolling back the image version depending on what is speci‐
fied in the deployment configuration.

Rollbacks | 33

Figure 3-8. Rollback button

Summary
This chapter demonstrated how you can quickly leverage OpenShift’s capabilities to
automate application deployment. These deployment strategies allow your business
services and applications to remain available during deployments of new versions
with fast rollback capabilities in case of failure.

By being able to trigger deployments on both image and configuration change, you
can automatically and rapidly manage smaller and more frequent updates to applica‐
tions using OpenShift.

34 | Chapter 3: Deployments

CHAPTER 4

Pipelines

The Job of the deployment pipeline is to prove that the release candidate is
unreleasable.

—Jez Humble

Pipelines allow teams to automate and organize all of the activities required to deliver
software changes. By rapidly providing visible feedback, teams can respond and react
to failures quickly.

In this chapter we are going to learn about using pipelines inside OpenShift so that
we can connect deployment events to the various upstream gates and checks that
need to be passed as part of the delivery process.

Our First Pipeline Example
Log in to OpenShift as our user and create a new project. We will follow along using
both the web-ui and the command-line interface (choose whichever one you’re most
comfortable using):

$ oc login -u developer -p developer

Create a new project called samplepipeline:

$ oc new-project samplepipeline --display-name="Pipeline Sample" \
 --description='Pipeline Sample'

Add the Jenkins ephemeral templated application to the project—it should be an
instant app in the catalog which you can check from the web-ui by using Add to
Project or from the CLI:

$ oc get templates -n openshift | grep jenkins-pipeline-example
jenkins-pipeline-example This example showcases the new Jenkins Pipeline ...

35

If you have persistent storage and you want to keep your Jenkins build logs after Jen‐
kins Container restarts, then you could use the jenkins-persistent template instead.

$ oc new-app jenkins-ephemeral

In the web-ui continue to the overview page. A Jenkins deployment should be under‐
way, and after the Jenkins images have been pulled from the repository, a pod will be
running (Figure 4-1). There are two services created: one for the Jenkins web-ui and
the other for the jenkins-jnlp service. This is used by the Jenkins slave/agent to inter‐
act with the Jenkins application:

$ oc get pods
NAME READY STATUS RESTARTS AGE
jenkins-1-1942b 1/1 Running 0 1m

Figure 4-1. The running Jenkins pod with two services

Let’s add the example Jenkins pipeline application using the “Add to project” button
in Figure 4-1, and the jenkins-pipeline-example template:

$ oc new-app jenkins-pipeline-example

36 | Chapter 4: Pipelines

Jenkins Example Application Template

If your installation doesn’t have the Jenkins pipeline example tem‐
plate, you can find and load it into OpenShift using this command:

$ oc create -f \
https://raw.githubusercontent.com/openshift/origin/
master/examples/jenkins/pipeline/samplepipeline.yaml

Once you have hit the Create button, select “Continue to overview”. The example
application contains a MySQL database; you should see this database pod spin up
once the image has been pulled. Let’s start the application pipeline build (Figure 4-2).
Browse to Builds → Pipelines, and click the Start Pipeline button or use the following
command:

$ oc start-build sample-pipeline

Figure 4-2. Start the application pipeline build

$ oc get pods
NAME READY STATUS RESTARTS AGE
jenkins-1-ucw9g 1/1 Running 0 1d
mongodb-1-t2bxf 1/1 Running 0 1d
nodejs-mongodb-example-1-3lhg8 1/1 Running 0 15m
nodejs-mongodb-example-1-build 0/1 Completed 0 16m

After the build and deploy completes (Figure 4-3), you should be able to see:

The Jenkins server pod.

The MongoDB database pod.

A running Node.js application pod.

Our First Pipeline Example | 37

And a Completed build pod.

Figure 4-3. Successful pipeline build

If you select the route URL, you should now be able to browse to the running applica‐
tion that increments a page count every time the web page is visited (Figure 4-4).

Figure 4-4. Running pipeline application

Pipeline Components
There are a few moving pieces required to set up a basic flow for continuous testing,
integration, and delivery using Jenkins pipelines. Before we look at the details, let’s
review them at a component level (Figure 4-5).

38 | Chapter 4: Pipelines

Figure 4-5. Pipeline components

Within Jenkins, the main components and their roles are as follows:

• Jenkins server instance running in a pod on OpenShift
• Jenkins OpenShift Login plug-in: manages login to Jenkins, permissions polling,

and one-way synchronization from OpenShift to Jenkins
• Jenkins OpenShift Sync plug-in: two-way synchronization of pipeline build jobs
• Jenkins OpenShift Pipeline plug-in: construction of jobs and workflows for pipe‐

lines to work with Kubernetes and OpenShift
• Jenkins Kubernetes plug-in: for provisioning of slave Jenkins builder pods

The product documentation is a great place to start for more in-depth reading.

So What’s Happened Here? Examination of the Pipeline Details
We’ve done a lot in a short amount of time! Let’s drill down into some of the details to
get a better understanding of pipelines in OpenShift. Browse to Builds → Pipelines →
sample-pipeline → Configuration in the web-ui, as shown in Figure 4-6.

Our First Pipeline Example | 39

http://red.ht/2nceWPX

Figure 4-6. Pipeline configuration

You can see a build strategy of type Jenkins Pipeline as well as the pipeline as code that
is commonly named a Jenkinsfile. The pipeline is a Groovy script that tells Jenkins
what to do when your pipeline is run.

The commands that are run within each stage make use of the Jenkins OpenShift
plug-in. This plug-in provides build and deployment steps via a domain-specific lan‐
guage (DSL) API (in our case, Groovy). So you can see that for a build and deploy we:

• Start the build referenced by the build configuration called nodejs-mongodb-
example:

openshiftBuild(buildConfig: 'nodejs-mongodb-example', showBuildLogs: 'true')

• Start the deployment referenced by the deployment configuration called nodejs-
mongodb-example:

openshiftDeploy(deploymentConfig: 'nodejs-mongodb-example')

The basic pipeline consists of:

node
A step that schedules a task to run by adding it to the Jenkins build queue. It may
be run on the Jenkins master or slave (in our case, a container). Commands out‐
side of node elements are run on the Jenkins master.

40 | Chapter 4: Pipelines

https://github.com/openshift/jenkins-plugin
https://github.com/openshift/jenkins-plugin

stage
By default, pipeline builds can run concurrently. A stage command lets you mark
certain sections of a build as being constrained by limited concurrency.

In the example we have two stages (build and deploy) within a node. When this pipe‐
line is executed by starting a pipeline build, OpenShift runs the build in a build pod,
the same as it would with any source to image build. There is also a Jenkins slave pod,
which is removed once the build completes successfully. It is this slave pod that com‐
municates back and forth to Jenkins via the jenkins-jnlp service.

So, when a build is running, you should be able to see the following pods:

$ oc get pods
NAME READY STATUS RESTARTS AGE
jenkins-1-ucw9g 1/1 Running 0 1d
mongodb-1-t2bxf 1/1 Running 0 1d
nodejs-3465c67ce754 1/1 Running 0 51s
nodejs-mongodb-example-1-build 1/1 Running 0 40s

Jenkins server pod.

MongoDB database pod.

Jenkins slave pod—in this case, a Node.js slave that is removed once the build is
completed.

The actual pod running the build of our application.

Pipeline Basics

To learn more about Jenkins pipeline basics, see the Jenkins pipe‐
line plug-in tutorial for new users.

Explore Jenkins
One of the great features of the integrated pipelines view in OpenShift is that you do
not have to drill into Jenkins if you don’t want to—all of the pipeline user interface
components are available in the OpenShift web-ui. If you want a deeper view of the
pipeline in Jenkins, select the View Log link on a Pipeline build in your browser.

Our First Pipeline Example | 41

https://github.com/jenkinsci/pipeline-plugin/blob/master/TUTORIAL.md
https://github.com/jenkinsci/pipeline-plugin/blob/master/TUTORIAL.md

OAuth Integration

The OpenShift Jenkins image now supports the use of an Open‐
Shift binding credentials plug-in. This plug-in integrates the Open‐
Shift OAuth provider with Jenkins so that when users attempt to
access Jenkins, they are redirected to authenticate with OpenShift.
After authenticating successfully, they are redirected back to the
original application with an OAuth token that can be used by the
application to make requests on behalf of the user.

Log in to Jenkins with your OpenShift user and password; if OAuth integration is
configured, you will have to authorize access as part of the workflow (Figure 4-7).

Figure 4-7. Jenkins user interface

There are various editors and drill-down screens within Jenkins available for pipeline
jobs. You can browse the build logs and pipeline stage views and configuration. If you
are using a newer version of Jenkins, you can also use the Blue Ocean pipeline view.

42 | Chapter 4: Pipelines

https://jenkins.io/projects/blueocean

Jenkins Slave Images

By default, the Jenkins installation has preconfigured Kubernetes
plug-in slave builder images. If you log in to Jenkins and browse to
Jenkins → Manage Jenkins → Kubernetes, there are pod templates
configured for Maven and Node.js and you may add in your own
custom images. You can convert any OpenShift S2I image into a
valid Jenkins slave image using a template; see the full documenta‐
tion for extensions.

Multiple Project Pipeline Example
Now that we have the basic pipeline running within a single OpenShift project, the
next logical step is to expand our use of pipelines to different projects and namespa‐
ces. In a software delivery lifecycle we want to separate out the different pipeline
activities such as development, testing, and delivery into production. Within a single
OpenShift PaaS cluster we can map these activities to projects. Different collaborating
users and groups can access these different projects based on the role-based access
control provided by the platform.

Build, Tag, Promote
Ideally we want to build our immutable application images once, then tag the images
for promotion into other projects—to perform our pipeline activities such as testing
and eventually production deployment. The feedback from our various activities
forms the gates for downstream activities. The process of build, tag, and promote
forms the foundation for every container-based application to flow through our
delivery lifecycle.

We can take the concept further with multiple PaaS instances by using image registry
integration to promote images between clusters. We may also have an arbitrary num‐
ber of different activities that can occur that are not specifically linked to environ‐
ments. Refer to the documentation for information on cross-cluster promotion
techniques.

Common activities such as user acceptance testing (UAT) and pre-production (pre-
prod) can be added into our basic workflow to meet any requirements your organiza‐
tion may have.

So, let’s get going on our next pipeline deployment. We are going to set up four
projects for our pipeline activities using OpenShift integrated pipelines:

CICD
Containing our Jenkins instance

Multiple Project Pipeline Example | 43

https://github.com/openshift/origin/tree/master/examples/jenkins/master-slave
https://github.com/openshift/origin/tree/master/examples/jenkins/master-slave
https://blog.openshift.com/cross-cluster-image-promotion-techniques

Development
For building and developing our application images

Testing
For testing our application

Production
Hosting our production application

Figure 4-8 depicts the general form of our application flow through the various
projects (development to testing to production) as well as the access requirements
necessary between the projects to allow this flow to occur when using a build, tag,
promote strategy. OpenShift authorization policy is managed and configured for
project-based service accounts as described in the following section.

Figure 4-8. Multiple project pipeline

Create Projects
We are going to use the CLI for this more advanced example so we can speed things
up a bit. You can, of course, use the web-ui or your IDE if you prefer. Let’s create our
projects first:

$ oc login -u developer -p developer
$ oc new-project cicd --display-name='CICD Jenkins' --description='CICD Jenkins'
$ oc new-project development --display-name='Development' \
 --description='Development'
$ oc new-project testing --display-name='Testing' --description='Testing'
$ oc new-project production --display-name='Production' --description='Produc
tion'

44 | Chapter 4: Pipelines

Project Name Patterns

It is often useful to create project names and patterns that model an
organization. For example:
“organization/tenant”-“environment/activity”-“project”
In this way you can create user groups to a full-tenant, tenant-env,
or tenant-env-project and do fine-grained RBAC on it. Also, it’s
easier to identify from the name to which user the project belongs,
in which activity or environment, so you can use the same internal
project name on every environment. With this pattern it is easier to
avoid project name collisions because within an OpenShift cluster,
the project name must be unique.

Add Role-Based Access Control
Let’s add in RBAC to our projects to allow the different service accounts to build, pro‐
mote, and tag images. First we will allow the cicd project’s Jenkins service account edit
access to all of our projects:

$ oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins \
 -n development
$ oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins \
 -n testing
$ oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins \
 -n production

Now we want to allow our testing and production service accounts the ability to pull
images from the development project:

$ oc policy add-role-to-group system:image-puller system:serviceaccounts:test-
ing \
 -n development
$ oc policy add-role-to-group system:image-puller system:serviceaccounts:produc-
tion \
 -n development

Deploy Jenkins and Our Pipeline Definition
Deploy a Jenkins ephemeral instance to our cicd project, enable OAuth integration
(the default), and set a Java heap size:

$ oc project cicd
$ oc new-app --template=jenkins-ephemeral \
 -p JENKINS_IMAGE_STREAM_TAG=jenkins-2-rhel7:latest \
 -p NAMESPACE=openshift \
 -p MEMORY_LIMIT=2048Mi \
 -p ENABLE_OAUTH=true

Multiple Project Pipeline Example | 45

Which Image?

Depending on which version of OpenShift you are using (commu‐
nity OpenShift Origin or the supported OpenShift Container Plat‐
form), you may wish to use different base images. The -1- series
refers to the Jenkins 1.6.X branch, and -2- is the Jenkins 2.X
branch:

jenkins-1-rhel7:latest, jenkins-2-rhel7:latest
 - officially supported Red Hat images from regis-
try.access.redhat.com
jenkins-1-centos7:latest, jenkins-2-centos7:latest
 - community images on hub.docker.io

Let’s create the pipeline itself using the all-in-one command if you are using the CLI:

$ oc create -n cicd -f \
 https://raw.githubusercontent.com/devops-with-openshift/pipeline-configs/
master/pipeline.yaml

You could do this manually as well if you wanted to break it down into constituent
steps. Add in an empty pipeline definition through the web-ui using Add to project
→ Import YAML/JSON, and cut and paste an empty pipeline definition:

https://raw.githubusercontent.com/devops-with-openshift/pipeline-configs/master/
empty-pipeline.yaml

We can then edit the pipeline in the web-ui using Builds → Pipelines → sample-
pipeline → Actions → Edit using the following pipeline code, and then pressing Save:

https://raw.githubusercontent.com/devops-with-openshift/pipeline-configs/master/
pipeline-groovy.groovy

It’s worth noting that you can easily create this piece of YAML configuration yourself
once you have performed the cut-and-paste exercise. This allows you to rapidly
develop and prototype your pipelines as code. Run the following command:

$ oc export bc pipeline -o yaml -n cicd

Jenkinsfile Path

Rather than embed the pipeline code in the build configuration, it
can be extracted into a file and referenced using the jenkinsfile
Path parameter. See the OpenShift product documentation for
more details.

Deploy Our Sample Application
Let’s deploy our sample Cat/City of the Day application into our development project.

46 | Chapter 4: Pipelines

http://red.ht/2nFeKnM

To demonstrate a code change propagating through our environ‐
ment, you can create a fork of the Git-hosted repository first—so
you can check in a source code change that triggers the pipeline
webhook automatically.

Invoke new-app using the builder image and Git repository URL—remember to
replace this with your Git repo. When creating a route, replace the hostname with
something appropriate for your environment:

$ oc project development
$ oc new-app --name=myapp \
 openshift/php:5.6~https://github.com/devops-with-openshift/cotd.git#master
$ oc expose service myapp --name=myapp \
 --hostname=cotd-development.192.168.137.3.xip.io

By default, OpenShift will build and deploy our application in the development
project and use a rolling deployment strategy for any changes. We will be using the
image stream that has been created to tag and promote into our testing and production
projects, but first we need to create deployment configuration items in those projects.

To create the deployment configuration, you first need to know the IP address of the
Docker registry service for your deployment. By default, the development user does
not have permission to read from the default namespace, so we can also glean this
information from the development image stream:

$ oc get is -n development
NAME DOCKER REPO TAGS UPDATED
myapp 172.30.18.201:5000/development/myapp latest 13 minutes ago

As a cluster admin user, you may also look at the Docker registry service directly:

$ oc get svc docker-registry -n default
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
docker-registry 172.30.18.201 <none> 5000/TCP 18d

Cluster IP address and port for the docker registry. See the product services docu‐
mentation for more information.

Create the deployment configuration in the testing project. Be sure to use your own
environment registry IP address. Every time we change or edit the deployment con‐
figuration, a configuration trigger causes a deployment to occur. We cancel the auto‐
matically triggered deployment because we haven’t used our pipeline to build, tag,
and promote our image yet—so the deployment would run until it timed out waiting
for the correctly tagged image:

$ oc project testing
$ oc create dc myapp --image=172.30.18.201:5000/development/myapp:promoteQA
$ oc deploy myapp --cancel

Multiple Project Pipeline Example | 47

http://red.ht/2oExVTo
http://red.ht/2oExVTo

One change we need to make in testing is to update the imagePullPolicy for our
container. By default, it is set to IfNotPresent, but we wish to always trigger a
deployment when we tag a new image:

$ oc patch dc/myapp \
 -p '{"spec":{"template":{"spec":{"containers":[{"name":"default-
container","imagePullPolicy":"Always"}]}}}}'
$ oc deploy myapp --cancel

Let’s also create our service and route while we’re at it (be sure to change the host‐
name to suit your environment):

$ oc expose dc myapp --port=8080
$ oc expose service myapp --name=myapp \
 --hostname=cotd-testing.192.168.137.3.xip.io

Repeat these steps for the production project:

$ oc project production
$ oc create dc myapp --image=172.30.18.201:5000/development/myapp:promotePRD
$ oc deploy myapp --cancel
$ oc patch dc/myapp \
 -p '{"spec":{"template":{"spec":{"containers":[{"name":"default-
container","imagePullPolicy":"Always"}]}}}}'
$ oc deploy myapp --cancel
$ oc expose dc myapp --port=8080
$ oc expose service myapp --hostname=cotd-production.192.168.137.3.xip.io --
name=myapp

We are using two separate (arbitrary) image tags: promoteQA for testing promotion
and promotePRD for production promotion.

Run Our Pipeline Deployment
Now we are ready to run our pipeline deployment from the cicd project:

$ oc start-build pipeline -n cicd

You should be able to see the pipeline build progressing using the web-ui in the cicd
project by navigating to Browse → Builds → Pipeline (Figure 4-9).

48 | Chapter 4: Pipelines

Figure 4-9. Complex pipeline running

If we browse to the testing project, we can also see two pods spun up and deployed.
We could then run automated or manual test steps against this environment. A test‐
ing environment on-demand—great!

We can also see that the pipeline is paused waiting for user input. If you select Input
Required you will be taken to the running Jenkins (you may have to log in if you
haven’t already). Select Proceed to allow the pipeline to continue to deploy to produc‐
tion (Figure 4-10).

Figure 4-10. Manually approve deployment to production

If you browse back to the production project, you’ll now see that two pods deployed
OK, and if you browse to the production application URL, you should be able to see
our City of the Day.

Multiple Project Pipeline Example | 49

Hold on a second! That’s a cat. It looks like we deployed the wrong branch of code
into our environments—perhaps our testing wasn’t as great as we thought.

Quickly Deploying a New Branch
Go to the development project and browse to Builds → Builds → myapp → Actions →
Edit. We can change the branch by changing master in the Source Repository Ref to
feature.

$ oc project development
$ oc patch bc/myapp -p '{"spec":{"source":{"git":{"ref":"feature"}}}}'

Let’s start another pipeline build, but this time do some manual testing to ensure we
get the right results before we deploy to production:

$ oc start-build pipeline -n cicd

That looks better. Manually approve the changes into our production environment
(Figure 4-11).

Figure 4-11. City of the Day (take 2)

Managing Image Changes
Operations teams looking to adopt containers in production have to think about soft‐
ware supply chains and how they can help developers to sensibly adopt and choose

50 | Chapter 4: Pipelines

supported enterprise-grade containers on which to base their own software. Given
that a container image is made up of layers, it is very important that developers and
operations teams are aware of what’s going into their containers as early in the devel‐
opment lifecycle as possible.

Containers converge the software supply chain that makes up the layered build arti‐
fact (Figure 4-12). Infra/ops still needs to update the underlying standard operating
environment, while developers can cleanly separate their own code and deliver it free
of impediments. Both teams can operate at a speed or cadence that suits, only chang‐
ing their pieces of the container repository when they need to. Incompatibilities can
be surfaced early during build instead of at deploy time, and tests can be used to
increase confidence.

Figure 4-12. Image build chain

The core build will contain enough of the operating system to run the middleware
and application. If you are using one of the Red Hat base builder images, that will
already provide middleware for your application. In our City of the Day application
we can easily see build chain dependencies using the oc adm build-chain command:

$ oc login -u sysadmin:admin
$ oc adm build-chain php:5.6 -n openshift --all
<openshift istag/php:5.6>
 <development bc/myapp>
 <development istag/myapp:latest>

The build-chain command is great because it can create pictures of the dependen‐
cies. I have created a new playground namespace using the same image and applica‐
tion deployed—let’s have a look at the build chain dependecies (Figure 4-13):

$ oc adm build-chain php:5.6 -n openshift --all -o dot | dot -T svg -o deps.svg

dot Utility

To run this command you may need to install the dot utility from
the graphviz package. For RPM-based Linux systems:

$ yum install graphviz

See http://www.graphviz.org/Download.php for other systems (Mac,
Windows, other Linux distros).

Managing Image Changes | 51

http://www.graphviz.org/Download.php

Figure 4-13. ImageStream dependencies

We can easily determine if a change in our base builder image php:5.6 will cause a
change in our application stack. This deployment uses an Image Change Trigger on
the build configuration to detect that a new image is available in OpenShift. When
the image changes, our dependent applications are built and redeployed automati‐
cally in our development and playground projects.

We can see the trigger in the build configuration (YAML/JSON) or by inspecting:

$ oc project development
$ oc set triggers bc/myapp --all
NAME TYPE VALUE AUTO
buildconfigs/myapp config true
buildconfigs/myapp image openshift/php:5.6 true
buildconfigs/myapp webhook gqBsJ6bdHVdjiEfZi8Up
buildconfigs/myapp github uAmMxR1uQnW66plqmKOt

Build configuration image change trigger

But what if we want the pipeline to manage our build and deployment based on a
base image change?

Cascading Pipelines
Lets take a simple layered Dockerfile build strategy example. We have two Dockerfiles
that we are going to use to layer up our image in this example. The layers are related
to each other using the standard FROM image definition in the Dockerfile. For exam‐
ple:

52 | Chapter 4: Pipelines

http://red.ht/2oDl1Fx

 Layered Image

app layer (foo app)
ops layer (middleware)

busybox

Base busybox image from Dockerhub

ops middleware layer—a shell script

foo application layer built from ops image

Now, we have arbitrarily made this example pretty simple and our operations man‐
aged middleware layer is a simple shell script! We are going to run through a worked
example, but this is how you would write the Dockerfiles:

middleware ops/Dockerfile
FROM docker.io/busybox
ADD ./hello.sh ./
EXPOSE 8080
CMD ["./hello.sh"]

application foo/Dockerfile
FROM welcome/ops:latest
CMD ["./hello.sh","foo"]

Now, what we would like is a pipeline build of the foo application being triggered
when the ops application image is rebuilt (either manually, or because a new busybox
image is pushed into our registry).

Let’s set up our welcome project and give the Jenkins service account edit access:

$ oc login -u developer -p developer
$ oc new-project welcome --display-name='Welcome' --description='Welcome'
$ oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins -n welcome

Next we create builds for the ops and foo applications. We need to wait for the
ops:latest image to exist before we can create and build foo, or we could use the --
allow-missing-imagestream-tags flag on the foo new-app command:

$ oc new-build --context-dir=sh --name=ops --strategy=docker \
 https://github.com/devops-with-openshift/welcome
$ oc new-build --context-dir=foo --name=foo --strategy=docker \
 --allow-missing-imagestream-tags \
 https://github.com/devops-with-openshift/welcome

Once the foo build completes, deploy our newly built image, and create a service and
a route for the foo application:

Cascading Pipelines | 53

$ oc create dc foo --image=172.30.18.201:5000/welcome/foo:latest
$ oc expose dc foo --port=8080
$ oc expose svc foo

We can test the running foo application:

$ curl foo-welcome.192.168.137.3.xip.io
Hello foo ! Welcome to OpenShift 3

Let’s create our welcome and foo pipeline builds in the cicd project we created earlier:

$ oc create -n cicd -f \
 https://raw.githubusercontent.com/devops-with-openshift/pipeline-configs/
master/ops-pipeline.yaml

We can then set up the build configuration triggers. We want to disable the build con‐
figuration ImageChange trigger from our foo application—because we want our foo
pipeline build to manage this build and deployment:

$ oc set triggers bc foo --from-image='ops:latest' --remove -n welcome

We now want to add the ImageChange trigger to our foo pipeline build configuration
—so that every time a new welcome image is pushed, our pipeline build will start:

$ oc patch bc foo -n cicd \
 -p '{"spec":{"triggers":[{"type":"ImageChange","imageChange":{"from":
{"kind":"ImageStreamTag","namespace": "welcome","name": "ops:latest"}}}]}}'

Similarly, we want to remove the build configuration ImageChange trigger from our
welcome application—because we want our welcome pipeline build to manage this
build and deployment when the busybox:latest image changes:

$ oc set triggers bc ops --from-image='busybox:latest' --remove -n welcome
$ oc patch bc ops -n cicd \
 -p '{"spec":{"triggers":[{"type":"ImageChange","imageChange":{"from":
{"kind":"ImageStreamTag","namespace": "welcome","name": "busybox:latest"}}}]}}'

Let’s test things out by triggering a welcome pipeline application build and deploy‐
ment. What we expect to see is a new foo pipeline build start automatically once the
welcome:latest image is pushed:

$ oc start-build ops -n cicd

We now have cascading build and deployment pipelines that we can use to manage
our various image changes (Figure 4-14). These pipelines can be managed separately
by different teams with different cadences for change. For example, the ops pipeline
may be run and changed occasionally for security patching or updates. The foo appli‐
cation will be changed and run regularly by developers.

The pipelines can also be arbitrarily complex—for example, we would want to
include testing of our images! We may also wish to manage the pipelines across sepa‐
rate projects and namespaces. So we have a basic InfraOps pipeline along with a Devel‐
oper pipeline.

54 | Chapter 4: Pipelines

Figure 4-14. Cascading pipeline deployment using ImageChange triggers

Customizing Jenkins
There are several important things you will need to consider when running Jenkins as
part of integrated pipelines on OpenShift. The product documentation is a great place
to learn about these. We are going to cover some important choices here.

The Jenkins template deployed as part of integrated pipeline is configured in the
OpenShift master configuration file. By default, this is usually the ephemeral (non‐
persistent) Jenkins template. You can change this behavior by editing the template
Name and templateNamespace field of the jenkinsPipelineConfig stanza. To keep all
of your historical build jobs after a Jenkins container restart, you can provision the
jenkins-persistent template and provide a PersistentVolume to keep those
records in.

You may also wish to turn on auto-provisioning of a Jenkins instance when a pipeline
build configuration is deployed by setting the autoProvisionEnabled: true flag.
You can set template parameters in the parameters section of the master config
jenkinsPipelineConfig section (openshift.local.config/master/master-config.yaml):

jenkinsPipelineConfig:
 autoProvisionEnabled: true
 parameters:
 JENKINS_IMAGE_STREAM_TAG: jenkins-2-rhel7:latest
 ENABLE_OAUTH: "true"
 serviceName: jenkins
 templateName: jenkins-ephemeral
 templateNamespace: openshift

Customizing Jenkins | 55

http://red.ht/2oEhcPQ

With these settings, when you deploy the sample pipeline application example:

$ oc new-app jenkins-pipeline-example

an ephemeral Jenkins instance using the supported jenkins-2-rhel7:latest image is
automatically created with OAuth enabled. To customize the official OpenShift Con‐
tainer Platform Jenkins image, you have two options:

• Use Docker layering
• Use the Jenkins image as a source to image builder

If you are using persistent storage for Jenkins, you could also add plug-ins through
the Manage Jenkins → Manage Plugins admin page that will persist across restarts.
This is not considered very maintainable because the configuration is manually
applied. You may also wish to extend the base Jenkins image by adding your own
plug-ins—for example, by adding in:

SonarQube
For continuous inspection of code quality.

OWASP
Dependency check plug-in that detects known vulnerabilities in project depen‐
dencies.

Ansible
Plug-in that allows you to add Ansible tasks as a job build step.

Multibranch
Plug-in to handle code branching in a single group.

This way, your customized, reusable Jenkins image will contain all the tooling you
need to support more complex CICD pipeline jobs—you can perform code quality
checks, check for vulnerabilities (continuous security) in your dependencies at build
and deployment time, as well as run Ansible playbooks to help provision off-PaaS
resources.

The multibranch plug-in will automatically create a new Jenkins job whenever a new
branch is pushed to a source code repository. Other plug-ins can define various
branch types (e.g., a Git branch, a Subversion branch, a GitHub pull request, etc.).
This is extremely useful when we want to reuse our Jenkinsfile pipeline as code
definitions across branches, especially if we are doing bug-fixing or feature enhance‐
ments on branches and merging back to trunk when completed.

See the product documentation for more details on customizing the Jenkins image.

56 | Chapter 4: Pipelines

https://wiki.jenkins-ci.org/display/JENKINS/SonarQube+plugin
https://wiki.jenkins-ci.org/display/JENKINS/OWASP+Dependency-Check+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Ansible+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Pipeline+Multibranch+Plugin
http://red.ht/2nceWPX

Extending Your Pipelines Using Libraries

There are some great dynamic and reusable Jenkins pipeline libra‐
ries that you can use within your own pipelines as code that offer a
lot of reusable features:

Fabric8 Pipeline for Jenkins
Provides a set of reusable Jenkins pipeline steps and functions.

Jenkinsfiles Library
Provides a set of reusable Jenkinsfile files you can use on your
projects.

Parallel Build Jobs
An important part of running jobs fast within our pipeline is the ability to run each
node in parallel if we choose. We can use the Groovy keyword parallel to achieve this.
Running lots of tests in parallel is a good example use case:

stage 'parallel'
parallel 'unitTests': {
 node('maven') {
 echo 'This stage runs automated unit tests'
 // code ...
 }
 }, 'sonarAnalysis': {
 node('maven') {
 echo 'This stage runs the code quality tests'
 // code ...
 }
 }, 'seleniumTests': {
 node('maven') {
 echo 'This stage runs the web user interface tests'
 // code ...
 }
 }, failFast: true

When we execute this pipeline, we can look at the pods created to run this job, or
inspect the Jenkins logs:

[unitTests] Running on maven-38d93137cc2 in /tmp/workspace/parallel
[sonarAnalysis] Running on maven-38fc49f8a37 in /tmp/workspace/parallel
[seleniumTests] Running on maven-392189bf779 in /tmp/workspace/parallel

We can see three different slave builder pods were launched to run each node. This
makes it easy to run steps at the same time, making our pipelines faster to execute as
well as making use of the elasticity OpenShift provides for running build steps in
containers on demand.

Parallel Build Jobs | 57

https://github.com/fabric8io/fabric8-pipeline-library
https://github.com/fabric8io/fabric8-jenkinsfile-library

Summary
This chapter demonstrated how you can readily use integrated pipelines with your
OpenShift projects. Automating each gate and step in a pipeline allows you to visibly
feed back the results of your activities to teams, allowing you to react fast when fail‐
ures occur. The ability to continually iterate what you put in your pipeline is a great
way to deliver quality software fast. Use pipeline capabilities to easily create container
applications on demand for all of your build, test, and deployment requirements.

58 | Chapter 4: Pipelines

CHAPTER 5

Configuration Management

In software engineering it is recommended to separate dynamic configuration from
static runtime software. This allows developers and operations engineers to change
the configuration without having to rebuild the runtime.

In OpenShift it is recommended to only have runtime software packaged into a con‐
tainer image and stored in the registry. Configuration is then injected into the image
at runtime during the initialization stage. A substantial benefit of this approach is that
the runtime image can be built once while the configuration can change as the appli‐
cation is promoted between different environments (e.g., dev to test to production).

OpenShift has a number of mechanisms by which configuration can be added to a
running pod:

• Secrets
• Configuration maps
• Environment variables
• Downward API
• Layered builds

In the following sections we will go through the pros and cons of each mechanism.

Secrets
As the name suggests, secrets are a mechanism by which sensitive information (e.g.,
usernames/passwords/certificates) can be added to pods.

59

Secret Creation
To create a secret, use the oc secret command:

$ oc secret new test-secret cert.pem

secret/test-secret

With multiple files contained in the secret:

$ oc secret new ssl-secret keys=key.pem certs=cert.pem

secret/ssl-secret

When creating secrets with multiple fields, the keys used to identify
the individual files need to correspond to the following convention
rfc1035/rfc1123 subdomain (DNS_SUBDOMAIN):

$ oc get secrets
NAME TYPE DATA AGE
ssl-secret Opaque 2 48s
test-secret Opaque 1 8m

For more information, see https://github.com/kubernetes/kuber
netes/blob/master/docs/design/identifiers.md.

For management purposes, secrets can also have labels assigned to them with the oc
label command:

$ oc label secret ssl-secret env=test

secret "ssl-secret" labeled

$ oc get secrets --show-labels=true

NAME TYPE DATA AGE LABELS
ssl-secret Opaque 2 25s env=test

Removing secrets is as simple as using the oc delete secret command:

$ oc delete secret ssl-secret

secret "ssl-secret" deleted

Using Secrets in Pods
Once the secret is created it needs to be added to the pod. There are two methods by
which to do this:

• Mounting the secret as a volume

60 | Chapter 5: Configuration Management

https://github.com/kubernetes/kubernetes/blob/master/docs/design/identifiers.md
https://github.com/kubernetes/kubernetes/blob/master/docs/design/identifiers.md

• Injecting the secret as an environment variable

In the following example we are going to use OCP resources created by executing the
following command:

$ oc new-app https://github.com/openshift/nodejs-ex

Mounting as a volume
The secret is added as a volume to the underlying deployment config. For example:

$ oc get dc| grep nodejs-ex

NAME REVISION DESIRED CURRENT TRIGGERED BY
node-canary 2 1 1 config,image(nodejs-ex:canary)
nodejs-ex 16 1 1 config,image(nodejs-ex:latest)

$ oc volume dc/nodejs-ex --add -t secret --secret-name=ssl-secret -m /etc/keys \
 --name=ssl-keys deploymentconfigs/nodejs-ex

Adding the volume will result in the firing of the config change trigger and the pods
will be redeployed.

To verify that the secrets are mounted under Volume Mounts, run the following com‐
mand:

$ oc describe pod nodejs-ex-21-apdcg

Name: nodejs-ex-21-apdcg
Namespace: node-dev
Security Policy: restricted
Node: 192.168.65.2/192.168.65.2
Start Time: Sat, 22 Oct 2016 15:48:26 +1100
Labels: app=nodejs-ex
 deployment=nodejs-ex-21
 deploymentconfig=nodejs-ex
Status: Running
IP: 172.17.0.13
Controllers: ReplicationController/nodejs-ex-21
Containers:
 nodejs-ex:
 Container ID: docker://
255be1c595fc2654468ab0f0df2f99715ac3f05d1773d05c59a18534051f2933
 Image: 172.30.18.34:5000/node-dev/nodejs-
ex@sha256:891f5118149f1f134330d1ca6fc9756ded5dcc6f810e251473e3eeb02095ea95
 Image ID: docker://
sha256:6a0eb3a95c6c2387bea75dbe86463e31ab1e1ed7ee1969b446be6f0976737b8c
 Port: 8080/TCP
 State: Running
 Started: Sat, 22 Oct 2016 15:48:27 +1100
 Ready: True
 Restart Count: 0

Secrets | 61

 Volume Mounts:
 /etc/keys from ssl-keys (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-lr5yp
(ro)
 Environment Variables: <none>

Alternatively:

$ oc get pod nodejs-ex-21-apdcg -o \
 jsonpath="{.spec.containers[*]['volumeMounts']}"

[{ssl-keys false /etc/keys } {default-token-lr5yp true /var/run/secrets/kuber-
netes.io/serviceaccount }]

The files contained within the secret will be available in the /var/keys directory.

$ oc rsh nodejs-ex-22-8noey ls /etc/keys

certs keys

Mounting secrets as environment variables
It is also possible to mount the contents of secrets as environment variables.

First, create the secret:

$ oc secret new env-secrets username=user-file password=password-file

secret/env-secrets

Then add it to the deployment config:

$ oc set env dc/nodejs-ex --from=secret/env-secrets

deploymentconfig "nodejs-ex" updated

$ oc describe pod nodejs-ex-22-8noey

Name: nodejs-ex-22-8noey
Namespace: node-dev
Security Policy: restricted
Node: 192.168.65.2/192.168.65.2
Start Time: Sat, 22 Oct 2016 16:37:35 +1100
Labels: app=nodejs-ex
 deployment=nodejs-ex-22
 deploymentconfig=nodejs-ex
Status: Running
IP: 172.17.0.14
Controllers: ReplicationController/nodejs-ex-22
Containers:
 nodejs-ex:
 Container ID: docker://
a129d112ca8ee730b7d8a41a51439e1189c7557fa917a852c50e539903e2721a
 Image: 172.30.18.34:5000/node-dev/nodejs-
ex@sha256:891f5118149f1f134330d1ca6fc9756ded5dcc6f810e251473e3eeb02095ea95

62 | Chapter 5: Configuration Management

 Image ID: docker://
sha256:6a0eb3a95c6c2387bea75dbe86463e31ab1e1ed7ee1969b446be6f0976737b8c
 Port: 8080/TCP
 State: Running
 Started: Sat, 22 Oct 2016 16:37:36 +1100
 Ready: True
 Restart Count: 0
 Volume Mounts:
 /var/keys from ssl-keys (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-lr5yp
(ro)
 Environment Variables:

 PASSWORD: <set to the key 'password' in secret 'env-secrets'>
 USERNAME: <set to the key 'username' in secret 'env-secrets'>

$ oc env dc/nodejs-ex --list

deploymentconfigs nodejs-ex, container nodejs-ex
PASSWORD from secret env-secrets, key password
USERNAME from secret env-secrets, key username

Something to be aware of with secrets is that if the user gets access
to the pod (e.g., by using the oc rsh command), the user will be
able to see the contents of the secrets either in the environment
variables or in the volume mounts. While the secrets mechanism
ensures that the data in the secret is never stored at rest on the
node, it is the user’s responsibility to ensure the secrecy of the con‐
tents.
It is recommended that the contents of the secret be encrypted or
obfuscated before creation. Secrets are stored internally in the etcd
datastore as Base64-encoded strings which may not be secure
enough in certain environments.

Additional Information
Secrets are intended to store only small amounts of data, and each secret is limited to
a maximum size of 1 MB. From an administrator’s perspective the number of secrets
a user can create is controllable via OpenShift ResourceQuotas.

Secrets are not shared across namespaces/projects; they need to be created in each
environment in which they’re required. Secrets also need to be created before the
pods that use them. If the secret isn’t there the dependent pods will fail to start.

Injected secrets are also idempotent from the perspective that any external changes
such as modification or removal will not be reflected in the dependent pods. To
receive any updates to the secrets, the dependent pods need to be restarted.

Secrets | 63

Secrets are primarily intended to be used for binary configuration items such as SSL
keys and certificates as well as username and password. For larger string-based con‐
figuration, configuration maps may be a better fit.

Configuration Maps
Configuration maps are very similar to secrets but are intended to contain nonsensi‐
tive text-based configuration. Similar to secrets, they can be injected into pods either
by being mounted as a volume into the filesystem or set as environment variables.

A major difference between configuration maps and secrets is how they handle
updates. When the content of a configuration map is changed, this is reflected in the
pod’s that it’s mounted in and the contents of the files in the pod’s filesystem are
changed. Configuration maps mounted as environment variables do not change.

To maximize the benefit of this feature, applications should be written to take advan‐
tage of dynamically changing configuration files. There are a number of libraries that
can help with this, including Apache Commons Configuration or Spring Cloud
Kubernetes for Java.

It is common to have pods using both secrets and configuration maps simultaneously
to configure the running container. See Figure 5-1.

Creating Configuration Maps
Configuration maps can be created containing one or more text files as well as literal
string values:

$ oc create configmap test-config --from-literal=key1=config1 \
 --from-literal=key2=config2 --from-file=filters.properties

configmap "test-config" created

Mounting Configuration Maps as Volumes
We can also mount configuration maps as volumes that are readable within our con‐
tainer:

$ oc volume dc/nodejs-ex --add -t configmap -m /etc/config --name=app-config \
 --configmap-name=test-config

deploymentconfigs/nodejs-ex

The configuration map will be available as files in the /etc/config directory:

$ oc rsh nodejs-ex-26-44kdm ls /etc/config

filters.properties key1 key2

64 | Chapter 5: Configuration Management

To dynamically change the configuration map, delete it and recreate. The pods using
it will be updated automatically without the pod restarting:

$ oc delete configmap test-config
configmap "test-config" deleted

$ oc create configmap test-config --from-literal=key1=config3 \
 --from-literal=key2=config4 --from-literal=key3=test \
 --from-file=filters.properties

configmap "test-config" created

$ oc rsh nodejs-ex-26-44kdm ls /etc/config

filters.properties key1 key2 key3

Figure 5-1. Secrets and configuration maps in the same pod

Mounting the Configuration Map as Environment Variables
It is also possible to mount configuration map entries as environment variables
(Figure 5-2):

$ oc set env dc/nodejs-ex --from=configmap/test-config

deploymentconfig "nodejs-ex" updated

$ oc describe pod nodejs-ex-27-mqurr

Configuration Maps | 65

Name: nodejs-ex-27-mqurr
Namespace: node-dev
Security Policy: restricted
Node: 192.168.65.2/192.168.65.2
Start Time: Sat, 22 Oct 2016 21:15:57 +1100
Labels: app=nodejs-ex
 deployment=nodejs-ex-27
 deploymentconfig=nodejs-ex
Status: Running
IP: 172.17.0.13
Controllers: ReplicationController/nodejs-ex-27
Containers:
 nodejs-ex:
 Container ID: docker://
b095481dfae40855815afe46dc61086957a99c907edb5a26fed1a39ed559e725
 Image: 172.30.18.34:5000/node-dev/nodejs-
ex@sha256:891f5118149f1f134330d1ca6fc9756ded5dcc6f810e251473e3eeb02095ea95
 Image ID: docker://
sha256:6a0eb3a95c6c2387bea75dbe86463e31ab1e1ed7ee1969b446be6f0976737b8c
 Port: 8080/TCP
 State: Running
 Started: Sat, 22 Oct 2016 21:15:59 +1100
 Ready: True
 Restart Count: 0
 Volume Mounts:
 /etc/config from app-config (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-lr5yp
(ro)
 Environment Variables:
 FILTERS_PROPERTIES: <set to the key 'filters.properties' of config map
'test-config'>
 KEY1: <set to the key 'key1' of config map 'test-config'>
 KEY2: <set to the key 'key2' of config map 'test-config'>

Figure 5-2. Environment variables

66 | Chapter 5: Configuration Management

Environment Variables
As seen previously, both elements of secrets and configuration maps can be added to
pods as environment variables. It is also possible to explicitly add and remove envi‐
ronment variables on their own.

Adding, removing, and modifying environment variables will
result in the ConfigChange trigger firing (if configured). See
“Change Triggers” on page 68.

Adding Environment Variables
The following command adds a number of individual environment variables to a
deployment configuration and hence will be added to all pods running under its con‐
trol:

$ oc set env dc/nodejs-ex ENV=TEST_ENV DB_ENV=TEST1 AUTO_COMMIT=true

deploymentconfig "nodejs-ex" updated

$ oc set env dc/nodejs-ex --list

deploymentconfigs nodejs-ex, container nodejs-ex
AUTO_COMMIT=true
DB_ENV=TEST1
ENV=TEST_ENV

Removing Environment Variables
Removing environment variables is just as straightforward as the following command
demonstrates. Once again the pods under the control of the deployment configura‐
tion will be restarted, assuming configuration change triggers are enabled (we’ll dis‐
cuss this further in the section that follows):

$ oc set env dc/nodejs-ex DB_ENV-

deploymentconfig "nodejs-ex" updated

$ oc env dc/nodejs-ex --list

deploymentconfigs nodejs-ex, container nodejs-ex
AUTO_COMMIT=true
ENV=TEST_ENV

Environment Variables | 67

It’s possible to both add and remove environment variables at the same time:

$ oc env dc/nodejs-ex ENV=TEST_ENV AUTO_COMMIT- MOCK=FALSE

deploymentconfig "nodejs-ex" updated

$ oc env dc/nodejs-ex --list

deploymentconfigs nodejs-ex, container nodejs-ex
ENV=TEST_ENV
MOCK=FALSE

Change Triggers
OpenShift currently supports two change triggers within the deployment configura‐
tion. If either of these triggers are fired, the deployment configuration will restart the
pods under its control.

ImageChange trigger
Fires when the underlying image stream changes (e.g., new build or import).

ConfigChange trigger
Fires when the configuration of the pod template within the DeploymentConfig is
changed.

It’s possible to disable one or both triggers. If a number of configuration changes are
required—say, adding both configuration maps and secrets—it may be preferable to
disable the ConfigChange trigger, add the required resources, and then re-enable the
trigger again.

In the following example, take notice of the pod name. With ConfigChangeTriggers
disabled the pod is not restarted until explicitly done so via the oc deploy command,
whereas the pod would automatically be restarted after each change if ConfigChange
Triggers is enabled:

$ oc set triggers dc/nodejs-ex --from-config --remove

deploymentconfig "nodejs-ex" updated

$ oc get pods

NAME READY STATUS RESTARTS AGE
nodejs-ex-35-iyefb 1/1 Running 0 9m

$ oc volume dc/nodejs-ex --add -t secret --secret-name=ssl-secret -m /etc/keys
--name=ssl-keys

deploymentconfigs/nodejs-ex

$ oc volume dc/nodejs-ex --add -t configmap -m /etc/config --name=app-config \

68 | Chapter 5: Configuration Management

 --configmap-name=test-config

deploymentconfigs/nodejs-ex

$ oc env dc/nodejs-ex ENV=TEST_ENV DB_ENV=TEST1 AUTO_COMMIT=true

deploymentconfig "nodejs-ex" updated

$ oc get pods

NAME READY STATUS RESTARTS AGE
nodejs-ex-35-iyefb 1/1 Running 0 9m

$ oc set triggers dc/nodejs-ex --from-config

deploymentconfig "nodejs-ex" updated

$ oc get pods

NAME READY STATUS RESTARTS AGE
nodejs-ex-35-iyefb 1/1 Running 0 9m <-- Not restarted

$ oc deploy dc/nodejs-ex --latest

Started deployment #36
Use 'oc logs -f dc/nodejs-ex' to track its progress.

$ oc get pods

NAME READY STATUS RESTARTS AGE
nodejs-ex-36-px3nq 1/1 Running 0 4s <-- Pod restarted

$ oc env dc/nodejs-ex --list

deploymentconfigs nodejs-ex, container nodejs-ex
ENV=TEST_ENV
DB_ENV=TEST1
AUTO_COMMIT=true

$ oc volumes dc/nodejs-ex

deploymentconfigs/nodejs-ex
 secret/ssl-secret as ssl-keys
 mounted at /etc/keys
 unknown as app-config
 mounted at /etc/config

Environment Variables | 69

Labels and Annotations
One of the most powerful features of OpenShift/Kubernetes is the platform’s support
for metadata. Two primary mechanisms can be used to configure and access meta‐
data:

• Labels
• Annotations

Labels are identifying metadata consisting of key/value pairs attached to resources.
Labels are used to add identifying attributes to objects that are relevant to users and
can be used to reflect architectural or organizational concepts. Labels can be used in
conjunction with label selectors to uniquely identify individual resources or groups of
resources.

Label examples

• Release
• Environment
• Relationship
• DMZBased
• Tier
• Node types
• User type

Annotations are similar to labels but primarily concerned with attaching non-
identifying information, which is primarily used by other clients such as tools or
libraries. Annotations don’t have the concept of selectors.

Annotation examples

• example.com/skipValidation=true
• example.com/MD5Checksum=23798FGH
• example.com/BUILDDATE=3479845

Downward API
The Downward API is a mechanism whereby pods can retrieve their metadata
without having to call into the Kubernetes API. The following metadata can be
retrieved and used to configure the running pods:

70 | Chapter 5: Configuration Management

• Labels
• Annotations
• Pod name, namespace, and IP address
• Pod CPU/memory request and limit information

Certain information can be mounted into the pod as an environment variable,
whereas other information can be accessed as files within a volume.

Table 5-1 outlines the metadata sources and how they can be accessed.

Table 5-1. Downward API sources

Item Description Environment variables Volume
name Pod name Yes Yes

namespace Pod namespace Yes Yes

podIP Pod IP address Yes No

labels Labels attached to the pod No Yes

annotations Annotations attached to the pod No Yes

resources CPU and memory requests and limits Yes Yes

Utilizing the Downward API requires the addition of environment variables or vol‐
ume mounts to the deployment configuration. The following pod spec gives an exam‐
ple of its usage:

kind: Pod
apiVersion: v1
metadata:
 labels:
 release: 'stable'
 environment: 'pre-prod'
 relationship: 'child'
 dmzbased: 'false'
 tier: 'front1'
 name: downward-api-pod
 annotations:
 example.com/skipValidation: 'true'
 example.com/MD5Checksum: '23798FGH'
 example.com/BUILDDATE: '3479845'
spec:
 containers:
 - name: volume-test-container
 image: gcr.io/google_containers/busybox
 command: ["sh", "-cx", "cat /etc/labels /etc/annotations;env"]
 volumeMounts:
 - name: podinfo
 mountPath: /etc
 readOnly: false

Downward API | 71

 env:
 - name: MIN_MEMORY
 valueFrom:
 resourceFieldRef:
 resource: requests.memory
 - name: MAX_MEMORY
 valueFrom:
 resourceFieldRef:
 resource: limits.memory
 volumes:
 - name: podinfo
 metadata:
 items:
 - name: "labels"
 fieldRef:
 fieldPath: metadata.labels
 - name: "annotations"
 fieldRef:
 fieldPath: metadata.annotations
 restartPolicy: Never

Using the preceding pod spec will result in the following output:

$ oc create -f metadata-pod.yaml

pod "downward-api-pod" created

$ oc logs downward-api-pod

+ cat /etc/labels /etc/annotations
dmzbased="false"
environment="pre-prod"
relationship="child"
release="stable"
tier="front1"example.com/BUILDDATE="3479845"
example.com/MD5Checksum="23798FGH"
example.com/skipValidation="true"
kubernetes.io/config.seen="2016-10-25T02:15:31.335189599-04:00"
kubernetes.io/config.source="api"
openshift.io/scc="restricted"
+ env
MIN_MEMORY=33554432
MAX_MEMORY=67108864
.
.
.
.

An example of use of this feature would be where the MAX_MEMORY and MIN_MEMORY
settings could be used to configure Java -Xmx -Xms memory settings in an application
startup script.

72 | Chapter 5: Configuration Management

Handling Large Configuration Data Sets
Both secrets and configuration maps are stored in the underlying etcd data store
within the OpenShift platform. For certain types of applications, configuration data
may be hundreds of megabytes or larger in size, particularly for image-heavy applica‐
tions or ones that consume a lot of binary data.

It’s preferable to store configuration of that size outside of etcd. Two approaches
which may help with this are persistent volumes and layered image builds.

Persistent Volumes
OpenShift supports stateful applications with persistent volumes (PVs) and persistent
volume claims (PVCs). PVs are volumes backed by shared storage which are moun‐
ted into running pods. PVs can be backed by multiple different storage mechanisms
(e.g., iSCSI, AWS EBS volumes, NFS, and others). PVCs are manifests that pods use
to retrieve and mount the volume into the pod at initialization time. PVCs can have
different types of access modes (i.e., ReadWriteOnce, ReadOnlyMany, ReadWrite‐
Many).

To handle large config files, one approach is to copy the configuration onto the PV
and mount the storage into the relevant pods using a ReadOnlyMany access mode.
Note, however, that any changes to the configuration files will not be detected by
OpenShift so the pods will have to be manually restarted if required.

Layered Images
OpenShift supports a layered images approach to building images. A layered image is
where the running image is made up of different layers where each layer sits on the
binaries/data of the previous layer.

Most of the time this approach is used to provide a container standard operating
environment (SOE) consisting of base operating system and application platform
dependencies. It can also be extended to incorporate configuration data as well.

Used in conjunction with the previously discussed Downward API approach, config‐
uration can be switched dynamically depending on the environment/namespace
(Figure 5-3).

Handling Large Configuration Data Sets | 73

Figure 5-3. Layered image and Downward API

This approach has a number of advantages:

• There is a single artifact (image) which is managed.
• The image is stored in the registry.
• No etcd storage impact, so large amounts of configuration data can be stored in

the image.

The disadvantages of this approach are as follows:

• The inflexibility to change and the need to perform image builds in order to
modify configuration.

• Breaks the initial recommendation of not storing configuration with application
image.

This approach could be used where the container contains both the application and
associated internationalized help files or documentation which would be cumber‐
some to load by other methods; or where container images needed to be fully inclu‐
sive of configuration/content when being promoted between different OCP clusters
(e.g., development and production where the two clusters are seperate with only a
registry in common).

Summary
This chapter has demonstrated the multiple methods by which configuration can be
managed in OpenShift. Each method can be used individually or in conjunction with
other configuration methods depending on the configuration needs of the applica‐
tions running in containers. The next chapter will discuss how to package applica‐
tions into containers to run on OpenShift.

74 | Chapter 5: Configuration Management

CHAPTER 6

Custom Image Builds

In OpenShift a running application is simply one or more container images running
in a pod. The mechanism by which the application is packaged into a runnable con‐
tainer image is called an image build.

OpenShift Builds
In OpenShift a build is the name given to the process of building a runnable con‐
tainer image.

The build process is concerned with extracting the application’s source or binary arti‐
facts from some source, compiling the code if required, and layering the runtime arti‐
fact onto a base image to run it.

Once built, the container image is uploaded to the OpenShift registry to be used in
the deployment process.

Build Strategies
A build strategy is the approach used to build the runtime image.

OpenShift supports a number of build strategies:

Source-to-Image (S2I)
The S2I uses the open source S2I tool to enable developers to reproducibly build
images by layering the application’s source or binary artifacts onto a container
image. The developer has to provide the location of the artifact and the builder
image to use.

75

Docker
The Docker strategy allows developers to build images by providing a Dockerfile
containing Docker directives.

Pipeline
The Pipeline strategy uses the open source Jenkins continuous integration plat‐
form to build container images. The developer provides a Jenkinsfile containing
the requisite build commands.

Custom
The custom strategy allows the developer to provide a customized builder image
to build the runtime image.

Build Sources
The source is the location of the artifact used in the builder. Currently there are four
sources, but not all sources are available to each strategy:

Git
The build configuration contains details of a Git-based repository from which
the application’s artifacts can be cloned.

Dockerfile
The build configuration contains an inline Dockerfile which is used to build the
image.

Image
The build configuration references artifacts stored in other images. These arti‐
facts are copied from the source images to the destination image as part of the
build.

Binary
The artifact is streamed from a local filesystem to the builder.

Build Configurations
Builds are configured and controlled by build configuration resources. Build configu‐
rations contain the details of the chosen build strategy as well as the source of the
developer-supplied artifacts such as Git location, the details of the builder image to be
used, and the output image.

The following build configuration was created by running the command:

$ oc new-app https://github.com/openshift/nodejs-ex

[...output skipped...]

$ oc get bc/nodejs-ex -o yaml

76 | Chapter 6: Custom Image Builds

apiVersion: v1
kind: BuildConfig
metadata:
 annotations:
 openshift.io/generated-by: OpenShiftNewApp
 creationTimestamp: 2017-01-30T21:18:02Z
 labels:
 app: nodejs-ex
 name: nodejs-ex
 namespace: test-project
 resourceVersion: "26555"
 selfLink: /oapi/v1/namespaces/test-project/buildconfigs/nodejs-ex
 uid: 9521be5e-e731-11e6-b3e5-eed674f91078
spec:
 nodeSelector: null
 output:
 to:
 kind: ImageStreamTag
 name: nodejs-ex:latest
 postCommit: {}
 resources: {}
 runPolicy: Serial
 source:
 git:
 uri: https://github.com/openshift/nodejs-ex
 type: Git
 strategy:
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: nodejs:4
 namespace: openshift
 type: Source
 triggers:
 - github:
 secret: cMROkbapdsuPwt5IX6-d
 type: GitHub
 - generic:
 secret: ff-Nsmz2z45Isx29GknH
 type: Generic
 - type: ConfigChange
 - imageChange:
 lastTriggeredImageID: centos/nodejs-4-
centos7@sha256:f437d0de54a294d19f84d738e74dc1aef70403fbe479316018fb43edcdafbf92
 type: ImageChange
status:
 lastVersion: 1

Of interest is:

The resultant image is output to nodejs-ex:latest in the OCP registry.

OpenShift Builds | 77

The source code is retrieved from the master branch of the Git repository located
at https://github.com/openshift/nodejs-ex.git.

The builder image is nodejs:4.

An S2I build strategy is being used.

Also notice that we did not specify the build image to use. This was auto-magically
determined under the covers by the S2I executable during its introspection of the
source files in the Git repo.

Unless specified otherwise, the oc new-app command will scan the
supplied Git repository. If it finds a Dockerfile, the Docker build
strategy will be used; otherwise the Source strategy will be used and
an S2I builder will be configured.

If the oc new-app command discovered a Dockerfile in the Git repository, then the
build configuration would contain the following:

...
strategy:
 dockerStrategy:
 from:
 kind: ImageStreamTag
 name: centos:latest
 type: Docker
...

Creating build configs
Image builds can be created in either the OpenShift UI or via the CLI. You can do this
in the CLI as follows:

$ oc new-build openshift/nodejs-010-centos7~https://github.com/openshift/nodejs-
ex.git
 --name='newbuildtest'

Alternatively, you can use this:

$ oc new-app openshift/nodejs-010-centos7~https://github.com/openshift/nodejs-
ex.git
 --name='newapptest'

oc new-build and oc new-app are somewhat similar in function. Both create build
configurations and image streams. However, oc new-app creates additional Open‐
Shift resources such as services and DeploymentConfigs.

78 | Chapter 6: Custom Image Builds

https://github.com/openshift/nodejs-ex.git

Source to Image
When building and deploying multiple applications, one recommendation to take
onboard is to limit the proliferation of multiple different build mechanisms being
used by DevOps teams. This is also true when building applications on the OpenShift
platform. An optimal approach is to have a set of image builders which are reused
across the applications being deployed onto the platform.

OpenShift comes with a number of these out of the box (Figure 6-1).

Figure 6-1. OCP builder images

The main components of S2I-type builders are as follows:

OpenShift Builds | 79

Builder image
This container image provides the installation and runtime dependencies for the
application.

S2I scripts
There are a number of S2I scripts:

• assemble (required)—Process the injected artifact (e.g., compile or install
onto the builder image).

• run (required)—The script to start up the application.
• usage (optional)—Print instructions on how to use the builder image.
• save-artifacts (optional)—Stream dependencies to standard out. This can

help improve the execution time of the build if incremental builds are sup‐
ported by the builder image.

• test/run (optional)—Verify if the image is working properly.

The builder image comes with a set of default S2I scripts provided by the author
Builder image. These scripts can be changed by the application developer (see “Cus‐
tom S2I Scripts” on page 81).

S2I Process
The S2I build process consists of the following steps:

1. Start an instance of the builder image.
2. Retrieve the source artifacts from the specified repository.
3. Place the source artifacts as well as the S2I scripts into the builder image. This is

done by bundling them up into a tar file and streaming it into the builder image.
4. Execute the assemble script.
5. Commit the image and push it to the OCP registry as referenced by the Image‐

Stream definition in the build configuration.

By default, the injected artifacts are placed in the /tmp directory.
This can be changed using the io.openshift.s2i.destination label on
the builder image. Similarly, the location of the S2I scripts can be
controlled by the io.openshift.s2i.scripts-url label.

OpenShift ships with a large number of builder images (e.g., NodeJS, Ruby, Python,
Dot Net, and others). These builder images perform source builds in which they

80 | Chapter 6: Custom Image Builds

download the source code onto the builder, compile it, and then install the compiled
source onto the destination image.

However, sometimes it is preferable to customize the image build process (e.g., place
the application binaries in a specific location).

There are two methods to customize the build process:

• Custom S2I scripts
• Custom S2I builder

Custom S2I Scripts
Developers can provide their own S2I scripts (e.g., assemble, run, etc.) to use within
the S2I build process, overwriting some if not all of the default scripts. By placing the
scripts in the .s2i/bin directory at the base of their source code repository, the scripts
will be injected into the builder image by the S2I process and used during the build
and subsequent execution phases.

Build environment
The .s2i directory can also contain a file named environment which can be used to
inject environment variables into the build process. An example of this would be to
add custom settings to the build process. The format of the file is a simple key=value
pair.

This can also be done by adding environment variables to the build configuration via
the oc set env command. For example:

$ oc set env bc/myapp OPTIMIZE=true

Custom S2I Builder
It is also possible to write your own custom S2I builder with your own builder image
and S2I scripts. We’re going to build a very basic Java builder one as a demonstration
of how to do this.

The custom S2I builder will perform the following actions:

1. Provide a customized runtime Java environment.
2. Retrieve an injected Java JAR file injected by the S2I process.
3. Copy the JAR file into a specific location to be executed by the run script.
4. Execute the run script.

Custom S2I Builder | 81

This example retrieves the binary artifact from a Git repository.
While it is generally not recommended to store binary files in a
source repository, this is done for illustration purposes only.

Builder Image
The image builder is basically a Dockerfile which installs the required dependencies
to build and run the application:

FROM centos:latest
MAINTAINER noconnor@redhat.com

RUN yum install -y java wget mvn --setopt=tsflags=nodocs && \
 yum -y clean all

LABEL io.k8s.description="Platform for building and running Java8 apps" \
 io.k8s.display-name="Java8" \
 io.openshift.expose-services="8080:http" \
 io.openshift.tags="builder,java8" \
 io.openshift.s2i.destination="/opt/app" \
 io.openshift.s2i.scripts-url=image:///usr/local/s2i

RUN adduser --system -u 10001 javauser
RUN mkdir -p /opt/app && chown -R javauser: /opt/app

COPY ./S2iScripts/ /usr/local/s2i

USER 10001
EXPOSE 8080

CMD ["/usr/local/s2i/usage"]

The base image that will run the application.

Required build and runtime dependencies.

Labels used to describe the builder. These will be used to populate the categories
in the OpenShift UI. See “S2I labels” on page 83.

Port to expose to handle application traffic.

The usage script to be run by default.

82 | Chapter 6: Custom Image Builds

S2I labels

io.openshift.s2i.destination
The location where the S2I process will place the application artifacts (e.g., source
code or binary files)

io.openshift.s2i.scripts-url
The location of the S2I scripts

There is also a set of image metadata labels that can help OpenShift manage the
resource needs of the container.

S2I Scripts

Assemble
In our example, the assemble script just copies the injected application Java JAR file
and moves it to the filesystem location expected by the run script. The script also
renames the JAR file to openshift-app.jar.

This image builder only supports binary builds and not source
builds. However, this is easily changed and left as an exercise for
the reader.

#!/bin/bash -e
#
S2I assemble script for the 'book-custom-s2i' image.
The 'assemble' script currently only supports binary builds.
#
For more information refer to the documentation:
https://github.com/openshift/source-to-image/blob/master/docs/
builder_image.md
#
if [! -z ${S2I_DEBUG}]; then
 echo "turning on assemble debug";
 set -x
fi

Binary deployment is a single jar
if [$(ls /opt/app/src/*.jar | wc -l) -eq 1]; then
 mv /opt/app/src/*.jar /opt/app/openshift-app.jar
else
 echo "Jar not found in /opt/app/src/"
 exit 1
fi

Custom S2I Builder | 83

http://red.ht/2nZ76qc

Run
The run script simply executes the Java JAR from where the assemble has placed it.
The run script is configured as the default command on the resulting image.

#!/bin/bash -e
java ${JAVA_OPTS} -jar /opt/app/openshift-app.jar

The S2I build process is highly customizable and can cater for
many kinds of build types and approaches. It would be very
straightforward to build a custom S2I builder which retrieved run‐
time application artifacts as part of the application startup process‐
ing the run script. This should be avoided as it makes the artifact
repository a runtime dependency and can complicate the rollback
of applications if deployment errors occur. It is recommended that
all application images be fully populated with the application binar‐
ies before being written to the registry by the S2I process.

Adding a New Builder Image
Build the builder image in the OpenShift namespace and store the image in the
OpenShift Registry:

$ oc new-build https://github.com/devops-with-openshift/book-custom-s2i.git -n
openshift

By default, the builder image is only available in the project/name‐
space that it’s created in. To make it available to all projects in the
OpenShift cluster, install it in the OpenShift namespace. However,
the default user doesn’t have access to create images in the Open‐
Shift namespace, so ensure that the user you’re logged in as has
these permissions (e.g., oc login -u system:admin).

Building a Sample Application
This example uses our installed builder to take a sample JAR file and deploy it onto
OpenShift. A sample application is provided at https://github.com/devops-with-
openshift/ItemsWS under the app directory.

• To create the project, run the following command:

$ oc new-project bookprj --description='Custom Builder Example' \
 --display-name='book project'

• To build the application using the custom builder and specifying the location
within the GIT repository for the binary artifact:

84 | Chapter 6: Custom Image Builds

https://github.com/devops-with-openshift/ItemsWS
https://github.com/devops-with-openshift/ItemsWS

$ oc new-app book-custom-s2i~https://github.com/devops-with-openshift/ItemsWS \
 --context-dir='app'

• Create the route:

$ oc expose service itemsws

• Get the exposed route:

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION
itemsws itemsws-bookprj.192.168.1.27.xip.io itemsws 8080-tcp

Use a browser go to the exposed route—for example, http://itemsws-bookprj.
192.168.1.27.xip.io/items.

You should see something like Figure 6-2.

Figure 6-2. REST web service example

Alternative approach
It’s also possible to use a binary build approach to build the application. In this exam‐
ple we assume that the sample application has been cloned from GitHub and is avail‐
able on the developer’s desktop.

This approach also assumes that the developer is working in the bookprj2 project.

To set up the project, run the following commands:

$ oc new-project bookprj2
Now using project "bookprj2" on server "https://127.0.0.1:8443".

$cd /tmp

Custom S2I Builder | 85

$git clone https://github.com/devops-with-openshift/ItemsWS
git clone https://github.com/devops-with-openshift/ItemsWS
Cloning into 'ItemsWS'...
remote: Counting objects: 67, done.
remote: Total 67 (delta 0), reused 0 (delta 0), pack-reused 67
Unpacking objects: 100% (67/67), done.
Checking connectivity... done.

$cd ItemsWS/app
$pwd
/tmp/ItemsWS/app

• Create the application build using the custom builder. Notice the --binary=true
flag. This turns the build from a source build where source code is injected into
the builder to a binary build where the compiled application is streamed into the
builder image:

$ oc new-build --image-stream=book-custom-s2i --binary=true --name=test-app \
 --strategy=source

--> Found image ebff189 (9 minutes old) in image stream "openshift/book-custom-
s2i" under tag "latest" for "book-custom-s2i"

 Java8

 Platform for building and running Java8 applications

 Tags: builder, java8

 * A source build using binary input will be created
 * The resulting image will be pushed to image stream "test-app:latest"
 * A binary build was created, use 'start-build --from-dir' to trigger a
new build

--> Creating resources with label build=test-app ...
 imagestream "test-app" created
 buildconfig "test-app" created
--> Success

• Start the build. The CLI will automatically stream the referenced JAR file to the
builder image as part of the binary build process:

$ oc start-build test-app --from-file=ItemWS-0.0.1-SNAPSHOT.jar
Uploading file "ItemWS-0.0.1-SNAPSHOT.jar" as binary input for the build ...
build "test-app-1" started

• Check for the built image:

$ oc get is
NAME DOCKER REPO TAGS UPDATED
test-app 172.30.197.150:5000/bookprj2/test-app latest About a minute ago

86 | Chapter 6: Custom Image Builds

• Start the built image:

$ oc run test-app --image=172.30.197.150:5000/bookprj2/test-app
deploymentconfig "test-app" created

• Expose the route:

$ oc expose dc/test-app --port=8080
service "test-app" exposed

$ oc expose service/test-app
route "test-app" exposed

It is also possible to deploy, run, and create the service by using the
oc new-app and oc expose commands.

$ oc new-app test-app

--> Found image 424d88c (7 minutes old) in image stream "bookprj2/test-app"
under tag "latest" for "test-app"

 bookprj2/test-app-1:88a4cf64

 Platform for building and running Java8 applications

 Tags: builder, java8

 * This image will be deployed in deployment config "test-app"
 * Port 8080/tcp will be load balanced by service "test-app"
 * Other containers can access this service through the hostname "test-app"

--> Creating resources ...
 deploymentconfig "test-app" created
 service "test-app" created
--> Success
 Run 'oc status' to view your app

$ oc expose svc/test-app

route "test-app" exposed

Troubleshooting
The image build logs can be viewed by either:

• Adding the --follow flag to the start-build command:

Custom S2I Builder | 87

$ oc start-build test-app --from-file=ItemWS-0.0.1-SNAPSHOT.jar --follow

• Viewing the log files during or after the build:

$ oc get builds
NAME TYPE FROM STATUS STARTED DURATION
test-app-1 Source Binary Complete 25 hours ago 5s
test-app-2 Source Binary Complete 25 hours ago 5s
test-app-3 Source Binary Complete 25 hours ago 5s

$ oc logs build/test-app-3
I0101 12:45:05.275821 1 builder.go:53] $BUILD env var is
{"kind":"Build","apiVersion":"v1","metadata":{"name":"test-
app-3","namespace":"test",.........

The S2I process also has different log levels that can be set by adding the BUILD_LOGLE
VEL environment variable to the build config:

$ oc set env bc/test-app BUILD_LOGLEVEL=5

The levels range from 0, which only outputs errors and assemble script output, to 5,
which includes detailed S2I and Docker information.

Troubleshooting the custom S2I scripts is also possible by adding a debug flag to the
scripts. In the sample script there is an environment variable S2I_DEBUG which turns
on bash tracing. This environment variable can be set by either:

• Adding a variable to the build configuration:

$ oc set env bc/test-app S2I_DEBUG=true

• Or by adding it in an environment file to the .s2i directory under the apps direc‐
tory:

$cat ItemsWS/app/.s2i/environment
S2I_DEBUG=true

Summary
This chapter discussed builds and some of the multiple methods by which applica‐
tions can be layered onto images. These concepts and examples will be useful to the
reader when customizing the OCP build process for their enviroment.

The custom S2I builder shown here is a very basic builder, and there are many
enhancements and features that can be used to make the builder more reliable and
enterprise-ready. For example:

• Handling secured artifact repositories with secrets
• Extended builds

88 | Chapter 6: Custom Image Builds

• Using secrets
• Using build hooks
• Parallel builds

These and more are covered in the OpenShift documentation.

Summary | 89

https://docs.openshift.com/

CHAPTER 7

Application Management

In this chapter we are going to explore common management and monitoring tools,
procedures, and practices when running and operating container workloads on
OpenShift. This includes topics such as logging and metrics, as well as resource
scheduling and how we can set quota and limits to help improve the utilization of
compute resources across all the nodes in our OpenShift cluster.

To help understand the operational layers, we define three here:

Operating system infrastructure operations
Deals with compute, network, storage, and operating systems

Cluster operations
This is all about OpenShift and Kubernetes cluster management

Application operations
Instrumenting and monitoring deployments, telemetry, logging, etc.

While we will focus on the third layer, in our DevOps world some of these concerns
may in fact be carried out by developers with operational sensibilities!

Integrated Logging
The first place to look when troubleshooting software issues is normally in the log
files. OpenShift provides access to logs for infrastructure, builds, deployments, and
running applications. Container-based application architectures have multitiered logs
that consist of container application logs, daemon logs, and general operating system
logs.

91

Container Logs Are Transient
With transient containers, it is considered an anti-pattern to log to ephemeral storage
within the container itself. Generally, the filesystem that the container mounts is
recreated every time the container is (re)started. The following options are generally
available for collecting the application container logs:

• Logging via data volumes
• Logging via the Docker logging driver
• Logging via a dedicated logging container
• Logging via the sidecar container approach

OpenShift provides integrated application logging via the Docker logging driver. In
the latest versions of OpenShift, Docker is configured to use the systemd journal dae‐
mon journald. The Docker logging driver reads log events directly from the contain‐
er’s STDOUT and STDERR output. There are several benefits to this approach:

• Your containers do not need to write to and read from log files, resulting in per‐
formance gains.

• Log events are stored on the host machine and bypass the Docker log daemon.
• It allows you to enable node log rotation, and limit log size and rate.
• You can use journalctl to retrieve container logs.

Using STDOUT and STDERR convention means that you do not need to configure spe‐
cific log files and directories within your applications. So if your application uses dif‐
ferent log files for different things, you may need to add other log fields to
differentiate these in your log stream.

Logs for your individual pods can be seen in the web-ui by navigating to Applications
→ Pods → Logs or by using the CLI:

oc logs -h

Aggregated Logging
The EFK stack aggregates logs from nodes and application pods running inside your
OpenShift installation.

Elasticsearch
An object store where all logs are stored, based on Lucene.

Fluentd
Gathers logs from nodes and feeds them to Elasticsearch.

92 | Chapter 7: Application Management

Kibana
A web-ui for Elasticsearch.

The EFK containers are normally deployed in a privileged OpenShift namespace by a
cluster administrator.

You will need to run oc cluster up using the --logging=true flag
to enable the aggregated logging service.

It is also possible to integrate logging to external ES clusters or to use Fluentd secure
forward to integrate into other logging solutions (such as Splunk, HDFS, or cloud-
based logging solutions; see Figure 7-1).

Figure 7-1. System, application, and external logs

Once deployed, Fluentd aggregates event logs from all nodes, projects, and pods into
Elasticsearch (ES). It also provides a centralized Kibana web-ui where users and
administrators can create rich visualizations and dashboards with the aggregated
data.

Fluentd bulk uploads logs to an index, in JSON format, then Elasticsearch routes
your search requests to the appropriate shards. Integrated role-based access control

Aggregated Logging | 93

ensures that you may only view logs for projects and namespaces for which you have
view or edit access. Cluster administrators can access all projects/namespace logs via
Kibana.

Kibana
We are going to use the Cat/City of the Day application scaled up to two pods to
explore some logging behavior with Kibana. When you drill down into a pod in the
web-ui, and select the Logs → Archive Logs link, you will be directed to Kibana and
get a default view for your pod logs (Figure 7-2).

Refer to the online documentation to understand Kibana basics.

Figure 7-2. Kibana pod logs

Our application pod logs are annotated with OpenShift Kubernetes metadata by Flu‐
entd. This is particularly useful for filtering in Kibana. By selecting a single log entry
in Kibana, you can see all of the data types that are annotated with the log entry
(Figure 7-3):

94 | Chapter 7: Application Management

https://www.elastic.co/guide/en/kibana/4.1/discover.html

Figure 7-3. Single log entry with Kubernetes annotations

We may add a filter, create searches using the filter predicates, as well as save the
searches for later use. OpenShift makes Kubernetes metadata available in the records
so it can be used in the search for data. The time range can be changed in the upper-
right corner of the Kibana Discover view.

Some General Aggregated Kibana Queries
Let’s take a look at some common queries. We have defined a filter for the project
name kubernetes.namespace_name: “development” shown in green in the following
examples:

• What are all the logs, for the last hour, for a single version of a single application
in my project, but across all replicas (Figure 7-4)?

kubernetes_labels_deployment:"<name of replication controller>"

Some General Aggregated Kibana Queries | 95

Figure 7-4. Single application, single version, last hour search

• What are all the logs, for the last hour, for all versions of a single application in
my project, but across all replicas (Figure 7-5)?

kubernetes_labels_deployment:"<name of deployment configuration>"

Figure 7-5. Single application, all versions, last hour search

• What are all the logs, categorized as error, for the last hour for all versions of a
single application in my project, but across all replicas (Figure 7-6)?

kubernetes_labels_deployment:"<name of deployment configuration>" &&
mesasge:"error"

Figure 7-6. Single application, all versions, errors last hour search

96 | Chapter 7: Application Management

Simple Metrics
With cluster metrics deployed, OpenShift provides memory, CPU, and network
bandwidth metrics for individual pods, and aggregated for all pod replicas.

You will need to run oc cluster up using the --metrics=true flag
to enable the metrics service.

As shown in Figure 7-7, you can also drill down into individual pods to see graphical
views that may be viewed over different time ranges.

Figure 7-7. Simple metrics

The kubelet on each OpenShift node exposes metrics that can be collected and stored
in backends by Heapster. As an OpenShift Container Platform administrator, you can
view a cluster’s metrics from all containers and components in one user interface.

These metrics are also used by horizontal pod autoscalers in order to determine when
and how to scale. If resource limits are defined for your project, then you can also see
a donut chart for each pod. Hawkular Metrics stores the data persistently (if config‐
ured) in a Cassandra database.

It is also possible to query the Hawkular metric API endpoint directly. Some very use‐
ful resources include:

• The upstream documentation for metrics
• Hawkular REST endpoint documentation
• Heapster schema documentation

Simple Metrics | 97

http://red.ht/2oD9fLj
https://github.com/openshift/origin-metrics/blob/master/docs/hawkular_metrics.adoc
http://www.hawkular.org/docs/rest/rest-metrics.html
https://github.com/kubernetes/heapster/blob/master/docs/storage-schema.md

To query metrics, set the HTTP headers shown in Table 7-1 on the request.

Table 7-1. Hawkular HTTP query headers

Header Description Value
Content-Type The desired return content type application/json;charset=UTF-8

Hawkular-Tenant The name of your OpenShift project development

Authorization The token returned by oc whoami -t or
a service account token

Bearer
L1D7XYL0oZk2v_ZuHKCZ3HUBkpu_AqlkvNV4VeAx_EY

So, to retrieve all of the metrics being held (not the raw data) for our development
project, we can use:

$ curl -k -X GET -H 'Content-Type: application/json;charset=UTF-8' \
 -H 'Hawkular-Tenant: development' \
 -H "Authorization: Bearer L1D7XYL0oZk2v_ZuHKCZ3HUBkpu_AqlkvNV4VeAx_EY" \
 'https://metrics-openshift-infra.192.168.133.5.xip.io/hawkular/metrics/
metrics'

You will see that each metric being collected has an ID that we can then use to query
the raw data. Let’s try and query one of these IDs. Looking at the Heapster Schema
documentation we can see that the uptime field refers to the number of milliseconds
since the container was started. So we can query the raw uptime data for a pod using
the ID listed in the preceding output as follows:

$ curl -k -X GET -H 'Content-Type: application/json;charset=UTF-8' \
 -H 'Hawkular-Tenant: development' \
 -H "Authorization: Bearer L1D7XYL0oZk2v_ZuHKCZ3HUBkpu_AqlkvNV4VeAx_EY" \
 https://metrics-openshift-infra.192.168.133.5.xip.io/hawkular/metrics/coun-
ters/pod%2Fde6e8516-c024-11e6-9789-525400b33d2a%2Fuptime/data
...
 {
 "timestamp": 1481517550000,
 "value": 26478
 },
 {
 "timestamp": 1481517540000,
 "value": 15950
 }
...

Replace / for URL encoded %2F characters in the metric ID portion
of the query at the end of the GET request. For example:

original id: pod/de627da6-c024-11e6-9789-525400b33d2a/
uptime
query string: pod%2Fde6e8516-c024-11e6-9789-525400b33d2a
%2Fuptime

98 | Chapter 7: Application Management

You can also combine a visualization layer such as Grafana to build custom and
dynamic dashboards on top of Hawkular metrics. There are some great blog posts
that show you how to do this.

Resource Scheduling
For end users, the default OpenShift configuration provides a seemingly infinite pool
of cluster resources (compute, memory, networking) that can be consumed at will
when developing, testing, and deploying applications.

Of course, cluster administrators have to manage and allocate resources across
projects, otherwise users (over time) will most certainly consume all available cluster
resources! As a developer, you can also set requests and limits on compute resources
at the pod and container level.

It is important for users to understand resource requests and limits so that no one
team uses more than its fair share of resources.

If you do not specify what resources you need, what is OpenShift’s default behavior?

• You get Best Effort isolation (i.e., no promises about what resources can be alloca‐
ted for your project).

• You might get defaulted values (i.e., this depends on cluster and/or project/name‐
space default configuration).

• You might get Out Of Memory killed randomly (e.g., if the node your workload is
running on runs out of resources).

• You might get CPU starved (e.g., it might take five minutes to schedule your
workload).

If you are running a development pod or some low-priority workload, the default
behavior might be OK. Of course, if it’s production you definitely need to think about
what resources your project needs. Common questions include:

• How many replicas does my workload need?
• How much CPU/memory does my workload need over a period of time?
• Should you provision for mission-critical worst-case scenarios (wasteful?)?
• Should you provision for average over-commit use cases (and have a higher fail‐

ure rate?)?
• Should you provision for high density, high quality of service (burstable?)?

At its core, the Kubernetes scheduler is built around the concept of managing CPU
and memory resources at a container level. Every OpenShift node is assigned an

Resource Scheduling | 99

http://bit.ly/2obs2MJ

amount of schedulable memory and CPU. Every container has a choice of how much
memory and CPU it will request. And the scheduler finds the best fit given the alloca‐
ted CPU and memory on the nodes.

There are two basic concepts involved in tuning behavior:

• The request value specifies the minimum value you will be guaranteed. This cor‐
responds to CPU shares with CGroups and is used to determine which contain‐
ers should get killed first when a system is running out of memory. The request
value is also used by the scheduler to assign pods to nodes. So a node is consid‐
ered available if it can satisfy the requests of all the containers in a pod.

• The limit value specifies the max value you can consume. This corresponds to a
CGroup CPU quota and memory limit, in bytes. Limit is the value applications
should be tuned to use.

Put another way, requests are used for scheduling your container and provide a mini‐
mum service guarantee. Limits constrain the amount of compute resources that may
be consumed on your node.

The scheduler attempts to improve utilization of your compute resources across all
nodes in your cluster by using a policy to best fit your application containers on each
node.

Getting accurate benchmarks for your applications can be extremely hard for compli‐
cated distributed systems. Resource needs will change over time. Currently, schedul‐
ing is based on requested values, and there is some hit and miss in figuring out what
these should be for your applications.

At a minimum you will need to decide on the quality of service characteristics your
applications require for CPU/RAM:

Best-Effort

A request value of 0 (unlimited) with no limit set is classified as best effort. Best-
Effort containers are the first to get killed when resources are limited.

Guaranteed

A container with a request value equal to its limit. These containers will never get
killed based on resource constraints.

Burstable

A container with a request value less than its limit. Will be killed after Best-
Effort containers when resources are limited if their usage exceeds their request
value.

Let’s have a look at controls you may consider for your workloads.

100 | Chapter 7: Application Management

Quotas

The code configuration examples for the following sections can
also be found on GitHub.
You can create resources using oc create -f <URL to raw file>.

Resource quotas let you specify how much memory and CPU your project can con‐
sume. They provide hard constraints that limit aggregate resource consumption per
project.

Quotas can limit the quantity of objects that can be created in a project, as well as the
total amount of compute resources that may be consumed by resources in that
project. The product documentation provides great information.

Let’s add some quotas (hard limits) to a project named development (go ahead and
create a new project if necessary):

$ oc login -u developer -p developer
$ oc new-project development --display-name='Development' \
 --description='Development'

As a cluster admin user, create a quota based on OpenShift object counts. You may
specify some or all of these object types:

$ oc login -u system:admin
$ oc create -n development -f - <<EOF
apiVersion: v1
kind: ResourceQuota
metadata:
 name: core-object-counts
spec:
 hard:
 pods: "4"
 configmaps: "5"
 persistentvolumeclaims: "2"
 replicationcontrollers: "10"
 resourcequotas: "4"
 secrets: "10"
 services: "5"
 openshift.io/imagestreams: "10"
EOF

The total number of pods that can exist in the project.

The total number of ConfigMap objects that can exist in the project.

Resource Scheduling | 101

https://github.com/devops-with-openshift/application-management-configs
http://red.ht/2nFhe5A

The total number of persistent volume claims (PVCs) that can exist in the
project.

The total number of replication controllers that can exist in the project.

The total number of resource quotas that can exist in the project.

The total number of secrets that can exist in the project.

The total number of services that can exist in the project.

The total number of image streams that can exist in the project.

We may then query these as any user (or view them in the web-ui under the Resour‐
ces → Quota tab):

$ oc describe quota -n development

Name: core-object-counts
Namespace: development
Resource Used Hard
-------- ---- ----
configmaps 0 5
openshift.io/imagestreams 0 5
persistentvolumeclaims 0 2
pods 0 4
replicationcontrollers 0 10
resourcequotas 1 4
secrets 9 10
services 0 5

Now let’s add some compute resource quotas:

$ oc login -u system:admin
$ oc create -n development -f - <<EOF
apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:
 pods: "4"
 requests.cpu: "0.2"
 requests.memory: 1Gi
 limits.cpu: "0.2"
 limits.memory: 1Gi
EOF

The total number of pods in a nonterminal state that can exist in the project.

102 | Chapter 7: Application Management

Across all pods in a nonterminal state, the sum of CPU requests cannot exceed
0.2 core.

Across all pods in a nonterminal state, the sum of memory requests cannot
exceed 1Gi.

Across all pods in a nonterminal state, the sum of CPU limits cannot exceed 0.2
cores.

Across all pods in a nonterminal state, the sum of memory limits cannot exceed
1Gi.

We can see these new quotas in the description:

$ oc describe quota -n development

Name: compute-resources
Namespace: development
Resource Used Hard
-------- ---- ----
limits.cpu 0 200m
limits.memory 0 1Gi
pods 1 4
requests.cpu 0 200m
requests.memory 0 1Gi
...

Quota Scopes
Each quota can have an associated set of scopes. A quota will only measure usage for a
resource if it matches the listed scopes.

This can be useful if you wish to exclude or include build or deployment pods in your
quotas (by setting scope to NotTerminating or Terminating) or for matching pods
that are BestEffort for CPU and memory.

For example, to limit pods to one in our project for all pods that are BestEffort (i.e.,
have no limit or requests quotas set):

$ oc login -u system:admin
$ oc create -n development -f - <<EOF
apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:
 pods: "1"
 scopes:

Resource Scheduling | 103

 - BestEffort
EOF

By setting the Quota Scope to NotTerminating, for example, we can avoid deploy‐
ment pod resources (see Chapter 3) from being counted as consumed resources.

Quota Enforcement
Once you create a quota, it is enforced when any new resource request is made. Usage
stats for the project are calculated periodically, and upon creation or modification of
quotas, the stats and limits are updated. New resource requests are restricted if limi‐
ted by hard quota restraints:

$ oc login -u developer -p developer
$ oc project development
$ oc new-app --name=myapp \
 openshift/php:5.6~https://github.com/devops-with-openshift/cotd.git#master
$ oc expose --name=myapp \
 --hostname=cotd-development.192.168.137.3.xip.io \
 service myapp

What happened? No pods were created. Let’s examine the project’s event stream:

$ oc get events
...
2s 11s 22 myapp-1 Build Warning
FailedCreate {build-controller } Error creating: pods "myapp-1-build"
is forbidden: Failed quota: compute-resources: must specify limits.cpu,lim-
its.memory,requests.cpu,requests.memory
...

We can see the build pod is forbidden now that our cluster admin has specified
project-based quotas. We need to specify values on our resources for CPU or mem‐
ory. We can specify individual values in the deployment config or by setting project
default values using limit ranges.

Limit Ranges and Requests Versus Limits
A LimitRange is a mechanism for specifying default project CPU and memory limits
and requests. If a resource does not set an explicit value, and if the constraint sup‐
ports a default value, then the default value is applied to the resource.

Let’s define some default limits for our project as the cluster admin user:

$ oc login -u system:admin
$ oc create -n development -f - <<EOF
apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "core-resource-limits"
spec:

104 | Chapter 7: Application Management

 limits:
 - type: "Pod"
 max:
 cpu: "0.2"
 memory: "1Gi"
 min:
 cpu: "50m"
 memory: "6Mi"
 - type: "Container"
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "50m"
 memory: "4Mi"
 default:
 cpu: "50m"
 memory: "200Mi"
 defaultRequest:
 cpu: "50m"
 memory: "100Mi"
 maxLimitRequestRatio:
 cpu: "10"
EOF

The limits are specified by pod and container, specifying min/max and default CPU/
memory amounts. Our build pod should now run based on the default limits:

$ oc get pods

NAME READY STATUS RESTARTS AGE
myapp-1-build 1/1 Running 0 4s

We can examine the limits for our project:

$ oc get limits -n development
NAME AGE
core-resource-limits 1m

$ oc describe limits core-resource-limits -n development
Name: core-resource-limits
Namespace: development
Type Resource Min Max Def Req Def Lim Max Lim/Req Ratio
--- -------- --- --- ------- ------- -----------------
Pod memory 6Mi 1Gi - - -
Pod cpu 50m 200m - - -
Container memory 4Mi 1Gi 100Mi 200Mi -
Container cpu 50m 2 50m 50m 10

as well as visualize the project quota metrics in the web-ui (Figure 7-8).

Resource Scheduling | 105

Figure 7-8. Quota and limits

Multiproject Quotas
Up till now we have been looking at per-project quotas. It is also possible to create
quotas across projects, or multiproject quotas. You may use project labels or annota‐
tions when creating these multiproject spanning quotas. For example, let’s create a
pod quota for our developer user across all their projects:

$ oc login -u system:admin
$ oc create clusterquota for-user-developer \
 --project-annotation-selector openshift.io/requester=developer \
 --hard pods=8

Normal users may then read and display this cluster quota:

$ oc login -u developer -p developer
$ oc describe AppliedClusterResourceQuota

Name: for-user-developer
Namespace: <none>
Created: 35 seconds ago
Labels: <none>
Annotations: <none>
Label Selector: <null>
AnnotationSelector: map[openshift.io/requester:developer]
Resource Used Hard
--- --- ---
pods 6 8

106 | Chapter 7: Application Management

Applications
As a developer, you may need to make some changes to your application to have it
properly adjust to the size of the container it’s in. You can read the CGroup limit from
within your container and adjust accordingly. If you are a Java developer, for exam‐
ple, you may dynamically set the MaxHeap parameter to a percentage of this value:

CONTAINER_MEMORY_IN_BYTES=`cat /sys/fs/cgroup/memory/memory.limit_in_bytes`

e.g.
$ oc exec myapp-1-ngadr cat /sys/fs/cgroup/memory/memory.limit_in_bytes
209715200

It is also possible to use the Kubernetes downward API to inject this value into your
applications environment:

env:
 - name: MEMORY_LIMIT
 valueFrom:
 resourceFieldRef:
 resource: limits.memory

By rightsizing your application memory requirements dynamically, you will be much
better placed to avoid out-of-memory events.

Eviction and Pod Rescheduling
Nodes may become unstable if all of the memory and compute resources become
used up by your application workloads.

Normally on Linux, when system memory (RAM) becomes low, swap space is used
instead. Swap space normally consists of a dedicated partition or file which is a lot
slower for read/writes than physical RAM.

OpenShift provides a mechanism using eviction policies, so that a node can proac‐
tively monitor for and prevent against total starvation of a compute resource. To take
advantage of memory-based evictions, OpenShift operators must disable swap:

$ swapoff -a

This allows pods to be evicted from a node when it is under memory pressure, and
rescheduled on an alternative node that has no such pressure. Eviction policies are
configured in the node_config.yaml file (these can also be set using Ansible). Both soft
limits (based on grace period) and hard limits (if met eviction occurs) are supported.

For details on how to configure eviction policy, see the product documentation.

Applications | 107

http://red.ht/2oExcS8

Overcommit
In nonproduction-type environments (where guaranteed performance is not a con‐
cern), operators may configure overcommit of compute resources.

Scheduling is based on resources requested, while quotas and hard limits refer to
resource limits, which can be set higher than requested resources. The difference
between request and limit determines the level of overcommit.

A node is overcommitted when it has a pod scheduled that makes no request, or
when the sum of limits across all pods on that node exceeds available machine
capacity.

For details on how to configure overcommit in your environment, see the product
documentation.

Auto Pod Scaling
As well as adjusting the number of pods by manually scaling a deployment configura‐
tion and/or a replication controller’s replicas value, OpenShift provides more
advanced scaling alternatives based on cluster metrics.

The first of these is based on the HorizontalPodAutoscaler (HPA) object. OpenShift
automatically increases or decreases the scale of a replication controller or deploy‐
ment configuration, based on metrics collected from the pods that belong to that rep‐
lication controller or deployment configuration.

Cluster Metrics and Quota and Limits must be enabled for HPA to
work.
The following metric is supported: CPU Utilization - Percentage of
the requested CPU.
Autoscaling applies only to the latest deployment in the Complete
phase.
See the product documentation.

Use the following command to create an HPA for our application deployment:

$ oc autoscale dc myapp --min 1 --max 4 --cpu-percent=75

The min/max pods are the number of replicas to scale up and down to.

The --cpu-percent argument is the percentage of the requested CPU that each pod
should ideally be using.

108 | Chapter 7: Application Management

http://red.ht/2nFsdMo
http://red.ht/2nFsdMo
http://red.ht/2nLR3ep

After an HPA is created, it begins attempting to query Heapster for metrics on the
pods. It may take a few minutes before Heapster obtains the initial metrics (<waiting>
will be displayed).

Eventually you will see a percentage in the CURRENT column:

$ oc get hpa myapp

NAME REFERENCE TARGET CURRENT MINPODS MAXPODS AGE
myapp DeploymentConfig/myapp 75% 0% 1 4 2m

We can use a tool to generate traffic for our web application—for example, the
Apache server benchmarking tool ab allows us to make 2,000 requests with 1,000
concurrently (you may need to adjust these for your environment):

$ while true; do ab -n 2000 -c 1000 \
 -k http://myapp-development.192.168.133.3.xip.io/item.php; sleep 0.5; done

As the CPU utilization increases as load builds up on our pod, we can watch the HPA
as it scales up pods, in this case eventually reaching three pods (Figure 7-9):

$ while true; do oc get hpa/myapp; sleep 5; done

NAME REFERENCE TARGET CURRENT MINPODS MAXPODS AGE
myapp DeploymentConfig/myapp 75% 0% 1 4 2m
myapp DeploymentConfig/myapp 75% 38% 1 4 5m
myapp DeploymentConfig/myapp 75% 62% 1 4 6m
myapp DeploymentConfig/myapp 75% 94% 1 4 15m
myapp DeploymentConfig/myapp 75% 68% 1 4 24m
myapp DeploymentConfig/myapp 75% 88% 1 4 30m
myapp DeploymentConfig/myapp 75% 68% 1 4 1h

Scale up to two pods.

Scale up to three pods.

Figure 7-9. HPA scaled pods

Auto Pod Scaling | 109

If we examine the quotas and limits in the web-ui, we should also see the correspond‐
ing CPU and memory request increases, as shown in Figure 7-10.

Figure 7-10. HPA quota and limits

You may have to adjust the ResourceQuota compute-resources up or
down, or adjust the 75% HPA target to suit your environment to
see HPA in action if the %current utilization does not reach the
target.

Future releases of OpenShift will make more metrics available as well as provide dif‐
ferent objects other than HPA for autoscaling workloads.

Java-Based Application Monitoring and Management
Using Jolokia
When instrumenting Java applications that run in a JEE application server or within a
JEE web server, a standard approach is to expose metrics via JMX (Java Management
Extensions). Managed Beans (or MBeans) expose resource metrics for all manner of
things, and you can, of course, create custom MBeans to instrument your own
application-specific attributes.

Jolokia is an open source Java agent that implements a JMX-HTTP bridge, so you can
easily query JMX resources over HTTP. Jolokia has some great features, including
multiplatform support, fine-grained security policies, and bulk requesting.

110 | Chapter 7: Application Management

https://jolokia.org/documentation.html

All of the standard Java xPaaS builder images provided for OpenShift integrate the
Jolokia agent as standard and expose the Jolokia agent on port 8778 in your contain‐
ers using the command line:

$ java -javaagent:/opt/jolokia/jolokia.jar=config=/opt/jolokia/etc/jolokia.prop-
erties ...

OpenShift provides an API proxy that allows you to securely connect to the Jolokia
agent running in your container. Let’s create a SpringBoot camel application using the
OpenShift xPaaS Java S2I builder image so we can look at metrics in some more
detail.

First, make sure you have the SpringBoot camel template loaded as a cluster admin:

$ oc login -u system:admin
$ BASEURL=https://raw.githubusercontent.com/jboss-fuse/application-templates/
application-templates-2.0.fuse-000027
$ oc replace --force -n openshift \
 -f ${BASEURL}/quickstarts/springboot-camel-template.json

Then create the application using S2I and the template as a normal user:

$ oc login -u developer -p developer
$ oc new-project spring-boot-cxf-jaxrs --display-name="spring-boot-cxf-jaxrs" \
 --description="spring-boot-cxf-jaxrs"
$ oc new-app --template=s2i-springboot-camel \
 -p GIT_REPO="https://github.com/fabric8-quickstarts/spring-boot-cxf-
jaxrs.git" \
 -p GIT_REF=""
$ oc expose dc s2i-springboot-camel --port=8080 --generator=service/v1
$ oc expose svc s2i-springboot-camel

Because this is a REST web service example application, we created a route so we can
call the web service externally:

$ curl http://s2i-springboot-camel-spring-boot-cxf-jaxrs.192.168.137.3.xip.io/
services/helloservice/sayHello/mike

Hello mike, Welcome to CXF RS Spring Boot World!!!

Once the build has completed successfully, the running pod will expose the Jolokia
port which we can see if we drill down in the web-ui (Figure 7-11).

Java-Based Application Monitoring and Management Using Jolokia | 111

Figure 7-11. Jolokia port

Rather handily, OpenShift also creates a link to Open Java Console. If you click on
this, the hawt.io web console opens and shows you the JMX Attribute view as
exposed by the Jolokia agent. Hawt.io allows you to manage and display all sorts of
Java things, so check it out if you haven’t seen it before.

We can connect to Jolokia from the CLI just like hawt.io does, with the following
information:

$ OAUTH_TOKEN=`oc whoami -t`
$ MASTER_HOST=192.168.137.3
$ POD_NAME=`oc get pods -l app=s2i-springboot-camel -o name`
$ PROJECT_NAME=`oc project -q`

OAuth token for the logged-in user.

Master API endpoint for the OpenShift cluster.

Application pod name from oc get pods.

Project name from oc project.

We can query the Jolokia agent via the OpenShift proxy by doing:

$ curl -k -H "Authorization: Bearer $OAUTH_TOKEN" \
 https://$MASTER_HOST:8443/api/v1/namespaces/$PROJECT_NAME/pods/https:
$POD_NAME:8778/proxy/jolokia/

To return metrics for JMX attributes exposed by MBeans, we need to know the name
of the attribute we are querying. You can find this easily in the hawt.io web-ui by
selecting the JMX attribute object name—for example, the Java Heap Memory for our
running application (Figure 7-12).

112 | Chapter 7: Application Management

http://hawt.io

Figure 7-12. JMX Java Heap Memory

Let’s read this variable using the CLI:

$ curl -k -H "Authorization: Bearer $OAUTH_TOKEN" \
 https://$MASTER_HOST:8443/api/v1/namespaces/$PROJECT_NAME/pods/https:
$POD_NAME:8778/proxy/jolokia/read/java.lang:type=Memory/HeapMemoryUsage
...
{
 "request": {
 "mbean": "java.lang:type=Memory",
 "attribute": "HeapMemoryUsage",
 "type": "read"
 },
 "value": {
 "init": 79691776,
 "committed": 458227712,
 "max": 1118830592,
 "used": 223657152
 },
 "timestamp": 1482884436,
 "status": 200
}
...

Let’s say we are also interested in the HTTP request count and total thread count in
our application. How can we query for all these?

Java-Based Application Monitoring and Management Using Jolokia | 113

Object Name Attribute Description
java.lang:type=Memory HeapMemoryUsage Java Heap Memory usage

java.lang:type=Threading ThreadCount Java Total Thread Count

Tomcat:type=RequestProcessor,worker="http-
nio-0.0.0.0-8080”,name=HttpRequest1

requestCount HTTP Request count for application

We could easily create a custom chart of these, as shown in Figure 7-13 (see https://
github.com/devops-with-openshift/ose-jolokia-demo).

Figure 7-13. Custom metrics

Summary
In this chapter we looked at common application operational features of the Open‐
Shift platform. Integrated logging and metrics provide a first line of defense when
troubleshooting application issues. By specifying resource limits and quotas against
your projects, OpenShift can effectively schedule containers across your cluster, giv‐
ing superior utilization with the quality of service level your business demands.

114 | Chapter 7: Application Management

https://github.com/devops-with-openshift/ose-jolokia-demo
https://github.com/devops-with-openshift/ose-jolokia-demo

For advanced application metrics and monitoring, see:

• Hawkular APM
• Hawkular Openshift Agent
• Prometheus
• Jolokia documentation (includes the full set of requests and responses that can be

sent to Jolokia)

Summary | 115

https://hawkular.gitbooks.io/hawkular-apm-user-guide
https://github.com/hawkular/hawkular-openshift-agent
https://prometheus.io
https://jolokia.org/documentation.html

Afterword

We hope you have found this book to be a useful primer on how to build out an auto‐
mated DevOps platform using OpenShift. There is so much to cover within Open‐
Shift alone, so we deliberately chose to highlight a few critical, high-impact
capabilities native to the platform.

When you come to apply this in your own environment, there is no doubt you will be
integrating OpenShift with other tools as part of your broader organization-wide
automation strategy. And again, while we have remained framework agnostic and
language polyglot, you may be thinking in terms of a specific framework or language.

OpenShift is a dynamic and vibrant open source community project, so it plays well
with other productivity tools, especially those sharing a common open community
ethos. OpenShift Commons is one place where we freely and openly gather many of
these like minds. Some of you may be interested in the fabric8 project, which is build‐
ing out an integrated end-to-end development platform for cloud native applications
and microservices.

What We Covered
We encourage everyone to regularly check the OpenShift community for the exciting
updates coming your way. Now let’s recap what we covered over the course of the
book:

• DevOps as value delivery and why it is important for DevOps automation-related
tooling to be accessible and inclusive to participants of all skill sets in the soft‐
ware delivery process.

• Setting up your own local OpenShift cluster instance and so giving you full
Developer, Operations, and Administration privileges to experiment and test
OpenShift capabilities.

117

https://commons.openshift.org/
https://fabric8.io/

• Patterns and practical examples of how to do cloud-scale deployments such as
rolling, A/B, blue-green, and canary using OpenShift, including an explanation
of deployment configuration trigger behavior and lifecycle hooks.

• Coverage of OpenShift’s native support for Jenkins, with guided examples on
how to implement continuous integration pipelines, as well as how to integrate to
third-party CI/CD automation tool chains using Git repository webhooks and
related techniques.

• The different approaches to configuration management, including how to work
with secrets and configmaps, and the use of labels and annotations and the
downward API.

• A review of the source-to-image feature so that you can then build your own cus‐
tom image build routines.

• A container nuanced view of application management functions, including log
aggregation, metrics, and quota management.

• And finally, summing up many of the OpenShift concepts covered through the
lens of the 12 Factor methodology.

Final Words
With OpenShift we are trying to help everyone do extraordinary things, making it
safe and easy for all the participants to work together to quickly deliver great software
that can make a real difference to users.

OpenShift is on its own journey of continuous innovation, absorbing feedback from
the community users and contributors. Expect to see over time an expansion of the
workload use cases covered by the OpenShift Container Management Platform.
Emerging standards in the container and orchestration open source community
projects will see more and more tools, services, and frameworks become first-class
citizens of the platform.

Visit the OpenShift website and blog for the latest and greatest features. If you have
suggestions or want to provide feedback for the platform, talk to us via the various
channels listed on the website project. But for now, stop reading and start coding!

118 | Afterword

https://www.openshift.com/
https://blog.openshift.com/

APPENDIX A

OpenShift and 12 Factor Apps

12 Factor Apps is a methodology that outlines rules guiding application developers on
how to build cloud native applications. The initial list came out of Heroku based on
their experience running applications on their Heroku platform.

We strongly recommend that the readers become familiar with these 12 factors and
use them as a guide while implementing their application. They are described in
detail at https://12factor.net. The 12 factors are:

Codebase
One codebase tracked in revision control, many deploys

Dependencies
Explicitly declare and isolate dependencies

Config
Store config in the environment

Backing services
Treat backing services as attached resources

Build, release, run
Strictly separate build and run stages

Processes
Execute the app as one or more stateless processes

Port binding
Export services via port binding

Concurrency
Scale out via the process model

119

https://12factor.net

Disposability
Maximize robustness with fast startup and graceful shutdown

Dev/prod parity
Keep development, staging, and production as similar as possible

Logs
Treat logs as event streams

Admin processes
Run admin/management tasks as one-off processes

We have also extended the list to include:

Security
DevSecOps allows seamless collaboration between teams to effectively mitigate
risk using a defense in-depth ecosystem approach

The purpose of this appendix is to go through each of the factors and map how they
apply to application development using the OpenShift Container Platform.

Codebase
“A twelve-factor app is always tracked in a version control system… A codebase is any
single repo (in a centralized revision control system like Subversion), or any set of repos
who share a root commit (in a decentralized revision control system like Git).”

Building images within OpenShift adheres to this rule. When performing source
builds in OpenShift, the platform will pull source code from a single repository and
uses this code to build a single image. When using the source strategy for builds, it is
possible to specify individual branches or tags. There is only one codebase per con‐
tainer application. Complex distributed systems containing multiple applications
each have their own codebase and will result in multiple container images.

Contrary to this rule it is also possible to specify a context dir to extract specific parts
of the codebase during a build. This can be used to provide flexibility when migrating
existing codebases to OpenShift.

Every developer can check out/clone their own copy of the codebase and may deploy
and run it in the OpenShift projects that they create. The codebase is the same across
all deploys and is collaboratively shared—albeit with different levels of staged com‐
mits—throughout the software delivery lifecycle.

Refer to Chapters 4 and 6 for more information.

120 | Appendix A: OpenShift and 12 Factor Apps

Dependencies
“A twelve-factor app never relies on implicit existence of system-wide packages.”

In OpenShift, applications are deployed as immutable images. These images are cre‐
ated by performing an image build. The built image is “fully contained” in that all
software packages that the application is dependent on are contained within the
image. Containers by design implicitly support this rule.

Once created, it is considered an anti-pattern to add new software and packages at
run time to the deployed container. While it is potentially possible to do this, the con‐
tainer reverts back to its immutable image-based state when a container is redeployed
or restarted.

During the image build process, explicit addition of software packages that the appli‐
cation is dependent on can be done in a number of ways:

• Declarative dependency management at the source-code level using the relevant
tool (e.g., Maven, Ruby Gems, Pip)

• Custom base images used in the build process containing all required dependen‐
cies

• Specifying a custom Dockerfile in a BuildConfig when using the Source strategy
in an OpenShift source build

Refer to Chapter 6 for more information.

Configuration
“Apps sometimes store config as constants in the code. This is a violation of twelve-factor,
which requires strict separation of config from code. Config varies substantially across
deploys, code does not.”

In general it’s considered an anti-pattern to package all environment-dependent
information (in properties files, for example) into the immutable image itself. There
is nothing explicitly stopping the developer from doing this, but by using the config‐
uration mechanisms available we can separate configuration from code.

As shown in Chapter 5, OpenShift has a number of mechanisms by which application
configuration can be managed and injected into a container during the deployment
phase (e.g., secrets, configmaps, and environment variables).

However, one refinement that we do recommend is to avoid placing sensitive infor‐
mation into environment variables as they may be visible on the OpenShift console.
Secrets are a more suitable mechanism for handling this kind of information.

Refer to Chapter 5 for more information.

OpenShift and 12 Factor Apps | 121

Backing Services
“The code for a twelve-factor app makes no distinction between local and third-party
services…Each distinct backing service is a resource.”

Utilizing the Kubernetes Services and Endpoints resources is the best approach to
abstract local or third-party services. Services can be backed by pods running on the
platform or may point to other off-platform resources such as a database. Services are
DNS resolvable within the platform, thus making them easily discoverable by name.
Services are dynamically updated at runtime—for instance, when pods are autoscaled
due to load or are replaced as software updates are made available, or when pods are
rescheduled onto another node due to node maintenance or eviction.

Refer to Chapters 5 and 3 for more information.

Build, Release, Run
“The twelve-factor app uses strict separation between the build, release, and run stages.”

In OpenShift the Build stage is the process of assembling all the application source
artifacts, building the application container image and pushing the resultant image to
the OpenShift Registry.

The Release stage is the triggering of new deployments based on configured image
change triggers within the OpenShift DeploymentConfig resource or by manually
performing a deployment via the CLI or web console. The DeploymentConfig can
receive notifications from the OpenShift Registry about new images being added or
image tag changes and react by performing a deployment or redeployment of pods
based on those changes.

OpenShift deployment strategies can also handle rollback of pods to the previous ver‐
sion in the case of errors as well as scriptable hooks which can be used to perform
actions at the start, middle, or end of the deployment process.

The Run stage is handled by the underlying Kubernetes scheduler which schedules a
pod to run on a node. Once scheduled, the node executes all the images contained
within a pod using the underlying container mechanism (e.g., Docker).

To ensure that traffic isn’t sent to a pod before it has fully started, a readiness probe
can be configured to check the status of the application. Only when the probe com‐
pletes successfully will traffic be forwarded to the pod.

Pipeline support in OpenShift allows teams to visibly automate tasks within the build
release and run stages. Pipeline failures may be remediated quickly by the appropriate
teams. Different communication channels (such as web, chat, or email) can be inte‐
grated. Complex processes including manual approval steps for promotion of partic‐
ular builds into environments can be achieved. By allowing teams to automate, test,

122 | Appendix A: OpenShift and 12 Factor Apps

and continually close the feedback loop, faster and higher quality software releases
into production ensue.

Refer to Chapters 4 and 6 for more information.

Processes
“Twelve-factor processes are stateless and share-nothing.”

Typically, OpenShift pods contain a single instance of a running application. Multiple
container instances share nothing other than a network address space, based on the
OpenShift namespace. Storage in pods running on OpenShift is ephemeral—for
example, any data written to /tmp on a pod will be lost when the pod is destroyed.

However, it may not be possible to rewrite or modify existing applications to move to
a stateless/share-nothing architecture before deploying them onto OpenShift.

OpenShift has a number of mechanisms that can help with running stateful
container-based applications.

Session Affinity
The OpenShift Router supports HTTP session affinity (sticky sessions).

Even though shared HTTP sessions are a violation of the 12 factor rule, you can relia‐
bly achieve them in OpenShift if you choose.

OpenShift supports the deployment of JBoss Data Grid to provide a multinode scala‐
ble distributed cache. This can be used for storing large data sets as well as HTTP ses‐
sion data if supported by the underlying web frameworks (e.g., JBoss EAP, Spring
Cache, etc.).

Storage
OpenShift supports the mounting of shared storage onto pods and have that storage
be reattached to the pod in case of a pod restart. This is done via persistent volumes
and persistent volume claims.

At the time of writing, OpenShift supports the following file volume types:

• NFS
• HostPath
• GlusterFS
• Ceph RBD
• OpenStack Cinder

OpenShift and 12 Factor Apps | 123

• AWS Elastic Block Store (EBS)
• GCE Persistent Disk
• iSCSI
• Fibre Channel

This area is discussed in detail in the OpenShift Container Platform documentation.

Stateful Pods
StatefulSets are a Kubernetes feature that enables pods to be stopped and restarted
while retaining the same network address and storage attached to them. StatefulSets
(PetSets in OCP 3.4) are still an experimental feature, but full support should be
added in an upcoming release.

Port Binding
“The twelve-factor app is completely self-contained and does not rely on runtime injec‐
tion of a webserver into the execution environment to create a web-facing service.”

OpenShift ships with a HAProxy-based router which provides ingress routing of
HTTP/HTTPS traffic into the running pods. While the main use case is to support
web traffic, it is also possible to support non-HTTP traffic (e.g., AMQP) by passing
the traffic over SSL and adding the route hostname via the Server Name Indication
(SNI) header. It is also possible to integrate existing load/balancing tiers into Open‐
Shift.

The Router also supports connection rate limiting, metrics, router sharding, and sub‐
domain wildcards.

For more information, see http://red.ht/2p2CIdD and http://red.ht/2p2LkB9.

OpenShift Services allow for easy DNS discovery within the platform so that one app
may become a backing service for another app. This aggregation and chaining of
services is a common pattern in microservices architecture.

Concurrency
“In the twelve-factor app, processes are a first class citizen…The process model truly
shines when it comes time to scale out.”

The running instantiation of an image is the container. A container in OpenShift is
simply a Linux process that has been provided a unique set of capabilities by the host
Linux kernel. This particular 12 factor app rule seems written for container applica‐
tion platforms like OpenShift!

124 | Appendix A: OpenShift and 12 Factor Apps

https://docs.openshift.com
http://red.ht/2p2CIdD
http://red.ht/2p2LkB9

The basic scaling model in OpenShift is to scale pods (one or more containers) hori‐
zontally either manually or via a configured autoscaler. It is possible to scale vertically
in OpenShift but you run the risk of consuming too many resources on a node (e.g.,
CPU/RAM) and then running into difficulties when the scheduler is unable to sched‐
ule the pod or, even worse, the scheduler killing the pod when resources become low
on the node.

Critical to the scaling and scheduling aspect of OpenShift is the addition of Limits
and Requests for both CPU and memory resources on the pods.

Kubernetes is declarative. Crashed pods are managed simply by the Replication Con‐
troller that keeps the desired number of running pods available at all times. User-
initiated restarts and shutdowns are similarly controlled.

For more information, see http://red.ht/2nFhe5A or refer to Chapter 7.

Disposability
“The twelve-factor app’s processes are disposable, meaning they can be started or stopped
at a moment’s notice.”

Container-based architectures—compared with more traditional VM or bare-metal-
based n-tier architectures—have a group of specific traits that compare the disposable
nature of containers to the uniqueness of virtual or bare-metal machines.

When your application changes—you do not modify the runtime container as you
might by adding software to a virtual machine—you simply rebuild the image and
redeploy the container based on the new version of the image. When your application
configuration changes, you do not change properties files in the container itself; you
apply the config and redeploy the same container image. When you move an image
through a SDLC, you build, tag, and promote the image and configuration rather
than rebuilding and configuration managing a virtual machine environment.

By default, OpenShift caches container images (that it pulls from configured image
registries) locally on each node that a pod is scheduled to. In this way, OpenShift can
start or stop a container at a moment’s notice. Kubernetes is declarative (i.e., you do
not tell OpenShift to start an application); instead, you declare the desired state of
your application (e.g., the number of pods to run) and the platform takes care of that
for you.

The quality of service guarantees described in this 12 factor app rule—robust self-
healing, graceful shutdown, minimize startup time—are inherently provided by the
Kubernetes orchestration tier within OpenShift.

Replication controller, Scheduler, liveliness, and readiness probes provide for robust
self-healing of your container workloads. To help minimize startup times of contain‐

OpenShift and 12 Factor Apps | 125

http://red.ht/2nFhe5A

ers, image layers are cached and distributed to nodes during deployment. A Routing
tier coupled with Rolling deployment strategies allow for your business services to be
fully available during deployments.

Check out the community Chaos Monkey pod as a way of testing the resilience of
your system by randomly killing pods to check that your system behaves properly.

OpenShift also supports idling where the pods can be scaled to zero when there’s no
traffic being routed to them. For more information, take a look at http://red.ht/
2nZbRjD.

Dev/Prod Parity
“The twelve-factor app is designed for continuous deployment by keeping the gap
between development and production small.”

OpenShift represents a platform approach that allows your organization to reorganize
the delivery of software products by teams that embody cross-cutting concerns (e.g.,
development, testing, databases, operations, security, business analysis). Teams can be
aligned in whatever way makes most sense—for example, they may be aligned to sin‐
gle lines of business within an organization.

Support for deployment strategies and pipelines enables you to configure OpenShift
to automate the delivery of container-based applications and so minimize the time
gap between development and production.

As a container management platform, OpenShift removes and eases many of the tra‐
ditional infrastructure provisioning events that typically occur in the delivery of soft‐
ware process. Such provisioning events often slow down, add friction, and help make
environments heterogeneous and fragile.

These are some of the elements that, put together, give you the flexibility to prioritize
and deploy resources to best ensure that software quickly passes through quality con‐
trol gates.

Logs
“A twelve-factor app never concerns itself with routing or storage of its output stream.”

OpenShift provides “logging as a service” for operational and container application
workloads on the platform. Container applications use the STDOUT and STDERR
convention to log. In OpenShift, Docker is configured to use the systemd journal dae‐
mon. The docker logging driver reads log events directly from the container’s output.

This means your applications do not need to configure specific log files and directo‐
ries within your application. Logs are streamed using fluentd to the appropriate log
analysis system. By default, this is based on Elasticsearch and Kibana in OpenShift,

126 | Appendix A: OpenShift and 12 Factor Apps

http://fabric8.io/guide/chaosMonkey.html
http://red.ht/2nZbRjD
http://red.ht/2nZbRjD

but it could be an external log aggregator system such as Datadog, Splunk, or
Hadoop/Hive.

If using the logging service in OpenShift, RBAC is integrated so you can only see logs
for the container applications you have access to. Indexed logs are curated, so that
indices may be retained and managed on an ongoing basis to prevent running out of
storage. The OpenShift aggregated container log design adheres to this 12 factor app
rule and extends its use to operational platform logs as well.

Refer to Chapter 7 for more information.

Admin Processes
“Run admin/management tasks as one-off processes.”

OpenShift provides a secure read-eval-print-loop shell (REPL) for all containers that
package a shell and libraries to support it. You can access a container’s shell console
exposed using the OpenShift API, integrated into the web-ui under “Pod”, “Terminal”,
or from the ID or CLI using oc rsh commands. Access to the Terminal can be dis‐
abled by cluster admins if desired.

Running one-off tasks such as database migrations can be achieved through leverag‐
ing OpenShift’s deployment hooks to run scripts at multiple stages of a pod deploy‐
ment’s lifecycle. OpenShift deviates from this rule as written, in that containers are
immutable. One-off processes that affect the application should interact through
either rebuilding and redeploying the container image from a well-known source
code version or updating the applied configuration using environment variables,
secrets, and configuration maps. Integrated deployment pipeline support in Open‐
Shift makes visible smaller code releases, allowing teams to promote image and con‐
figuration through a well-defined software delivery lifecycle.

Security
The initial 12 factors did not mention any aspects of application security. Security is a
broad subject spread across multiple tiers and approaches. OpenShift doesn’t force
any explicit security approach on application developers, and they are free to choose
whichever approach suits their needs. However, OpenShift does provide a tiered
approach to container security which it enforces at a platform level. The following is
an incomplete list of security facilities available within OpenShift:

• Red Hat Enterprise Linux—providing SELinux, Kernel Namespaces, CGroups,
and Seccomp security facility.

• Secure private registry, white/black list of third-party external registries.
• Reproducible container builds with image signing and scanning.

OpenShift and 12 Factor Apps | 127

• Secured and managed container deployments, pod-level privileges via Security
Context Constraints which block root access by default.

• Network isolation via multi-tenancy plug-in.
• API, console, and web secured via role-based access controls. This can be backed

by integration into multiple backends (e.g., LDAP, OAuth, etc.).

Summary
We have listed here the classic “12 factors” of cloud native applications and demon‐
strated how these factors relate to OpenShift. While this has been a technology-
centric view, let’s conclude by recalling that technology and organizational culture are
in a mutually dependent orbit. With OpenShift we are trying to reinforce some desir‐
able target behaviors—collaboration, experimentation—which may come to alter the
culture itself.

But for sustainable change, bottom-up grassroots support needs to be matched from
the top-down. For those benefits to be enduring—software changes delivered faster,
cheaper, materially impacting users—organizational, people, and cultural issues must
also be attended to.

128 | Appendix A: OpenShift and 12 Factor Apps

Index

A
A/B deployment strategy, 28-31
admin processes factor, 127
all-in-one cluster, 7
Amazon Web Services (AWS) Test Drive pro‐

gram, ix
annotations, 70
Ansible plug-in, 56
Apache Commons Configuration, 64
application management, 91

auto pod scaling, 108-110, 125
cluster metrics, 97-99
eviction policies, 107
Java-based, 110-114
logging, 91-96
memory requirements, adjusting, 107
overcommit, configuring, 108
pod rescheduling, 107
resource scheduling, 99-106

application operations, 91
application templates, 24
auto pod scaling, 108-110, 125
auto-provisioning, 55
automation, vii
AWS (Amazon Web Services) Test Drive pro‐

gram, ix

B
backing services factor, 122
Binary, as build source, 76
Blue Ocean pipeline view, 42
blue-green deployment strategy, 27-28
build, release, run factor, 122
build, tag, promote process, 43-44

builds, 37-41, 75
build configurations, 76-78
build logs, 87-88
sources for, 76
strategies for, 75-76, 78

C
canary deployment strategy, 31-32
cascading pipelines, 52-55
CD (continuous delivery), 3
CD (continuous deployment), 3
CI (continuous integration), 2
CLI (command-line interface) (see oc client

tools)
cluster metrics, 97-99
cluster operations, 91
CM (configuration management), 4, 59

annotations, 70
configuration maps, 64-67
Downward API, 70-72
environment variables, 67-70
labels, 70
large configuration data sets, 73-74
secrets, 59-64

code examples, x
codebase factor, 120
command-line interface (CLI) (see oc client

tools)
concurrency factor, 124
ConfigChange trigger, 68
configuration factor, 121
configuration management (see CM)
configuration maps, 64-67

creating, 64

129

mounting as environment variables, 65-67
mounting as volumes, 64

console (see web-ui)
contact information for this book, xi
container logs, 92
container orchestration, 2

(see also Kubernetes)
container-centric view of DevOps, 1-5
containers, 2
continuous delivery (CD), 3
continuous deployment (CD), 3
continuous improvement, 5
continuous integration (CI), 2
conventions used in this book, x
CPU resources, 26-27
Custom deployment strategy, 22, 76

D
dependencies

builder image installing, 82
codebase factor regarding, 121
OWASP plug-in for, 56
viewing, 51

deployment configuration, 17
deployment patterns, 4
deployment process, 17-33

A/B deployment strategy, 28-31
blue-green deployment strategy, 27-28
canary deployment strategy, 31-32
Custom strategy, 22
lifecycle hooks, 18, 22-26
pod resources, 26-27
recreate strategy, 21-22
replication controller, 17
rollbacks, 32-33
rolling strategy, 18-19
strategies for, 18-32
triggers for, 17, 19-21, 54, 68-70

developer account, OpenShift, 7
DevOps, 1-5
dev/prod parity factor, 126
disposability factor, 125-126
Docker

installing, 9
logging driver, 92

docker-registry service, 47
Dockerfile, as build source, 76
Dockerfile build strategy, 52-55, 76
dot utility, 51

Downward API, 70-72

E
EFK stack, 92-93
Elasticsearch, 92
environment variables, 67-70

adding, 67
change triggers, 68-70
mounting secrets as, 62-63
removing, 67

etcd data store, 73
eviction of pods, 107-107

F
Fabric8 Pipeline for Jenkins library, 56
Fluentd, 92-93

G
Git, 2

as build source, 76
building from repository, 47
codebase factor regarding, 120
in build configs, 78

GitHub account, 16
graphviz package, 51

H
Hawkular Metrics, 97-99
Heapster, 97-98
HPA (HorizontalPodAutoscaler), 108-110

I
Image, as build source, 76
image registry, 43
ImageChange trigger, 52, 68
images

building (see builds)
changes in, managing, 50-52
layered images, 73-74
slave images, 41, 43

J
Jenkins, 55-57

Ansible plug-in, 56
auto-provisioning, 55
branches, 46
Fabric8 Pipeline for Jenkins library, 56

130 | Index

Kubernetes plug-in, 39, 43
Multi-branch plug-in, 56
OpenShift plug-in, 40
OWASP plug-in, 56
persistent storage, 56
pipeline components, 38
pipeline example template, 35-38, 55
slave images, 41, 43
SonarQube plug-in, 56
template application, 35-43
viewing in web-ui, 39-43

Jenkinsfile, 40, 46
Jenkinsfiles Library, 56
Jolokia, 110-114

K
Kibana, 93, 94-96
Kubernetes, 2

access codes, 15
injections into application environment, 107
Jenkins Kubernetes plug-in, 39, 43
metadata, 70, 94
scheduler, 99, 122
services and endpoints, 122
Spring Cloud Kubernetes, 64
stateful pods, 124

L
labels, 70
layered images, 73-74
lifecycle hooks, 18, 22-26
limits, for resources, 100, 104-105, 125
logging, 91-96

aggregated, 92-93
build logs, 87-88
container logs, 92
integrated, 91
logs factor regarding, 126

M
memory

adjusting requirements, 107
eviction policies, 107
pod rescheduling, 107
pod resources, 26-27

metadata, 70, 94
mid-deployment hooks, 22
Minishift, 16

Multi-branch plug-in, 56

O
OAuth provider, 42
oc adm build-chain command, 51
oc autoscale command, 108
oc client tools

installing, 8
version of, 9

oc cluster down command, 11
oc cluster up command, 7-8

host-config-dir parameter, 10
host-data-dir parameter, 10
logging parameter, 93
metrics parameter, 97
use-existing-config parameter, 11
wrappers for switches, 11

oc create command, 14, 46
oc create dc command, 47, 53
oc delete secret command, 60
oc deploy command, 19
oc describe command, 19, 33
oc export command, 46
oc expose service command, 47
oc get events command, 25
oc get pods command, 24, 36
oc label command, 60
oc login command, 11-12
oc logs command, 25, 92
oc new-app command, 19
oc new-build command, 53, 78, 84
oc new-project command, 23, 44
oc patch command, 21, 22, 50
oc policy command, 45, 53
oc project command, 45
oc rollback command, 32-33
oc rsync command, 26
oc secret command, 60
oc set env command, 62, 65, 67
oc set triggers command, 20, 33, 54, 68
oc start-build command, 48, 50, 87
oc version command, 9
oc volume dc command, 15, 61, 64
online resources

application templates, 24
auto pod scaling, 108
AWS Test Drive program, ix
Blue Ocean pipeline view, 42
code examples in this book, x

Index | 131

compute resources, 101
cross-cluster promotion, 43
Custom deployment strategy, 22
deployment pod resources, 27
docker-registry services, 47
eviction policies, 107
for this book, xii
GitHub, 16
Hawkular Metrics, 97, 115
Heapster, 97
Jenkins, 39, 41, 55, 56
Jenkinsfile, 46
Jolokia, 115
Kibana, 94
Kubernetes, 15
Local Cluster Management, 9
OpenShift, ix, 7, 117-118
overcommit configuration, 108
persistent volume configuration, 14, 23
Red Hat Developer Program, ix
slave images, 43
12 Factor Apps, 119

OpenShift, 1-5
all-in-one cluster, 7
CLI (see oc client tools)
community, 117-118
console (see web-ui (console))
developer account, 7
enabling DevOps with, 1-5
installing, 7-10
knowledge required of, viii
launching, 10-11
logging in, 11-13
Minishift, 16
online resources for, ix
Online (V3) Cloud service, 16
profiles, 10, 13
replication controller, 17
storage, attaching, 14-16

OpenShift plug-in for Jenkins, 40
operating system infrastructure operations, 91
operational layers, 91
overcommit, configuring, 108
OWASP plug-in, 56

P
parallel build jobs, 57
persistent storage, 56
persistent volume (see PV)

persistent volume claim (see PVC)
Pipeline build strategy, 76
pipelines, 3, 35-41

cascading, 52-55
components, 38
creating, 35-38, 46
deploying, 46-48, 50
editing, 46
multiple project pipelines, 43-50
parallel build jobs, 57
running, 37-38, 48-50
viewing in web-ui, 39-43

pod-based hooks, 22
pods

adding secrets to, 60-63
auto scaling, 108-110, 125
evicting, 107-107
rescheduling, 107
resources consumed by, 26-27
stateful, 124
storage in, 123

port binding factor, 124
post-deployment hooks, 22
Postgres database, 23-26
pre-deployment hooks, 22
processes factor, 123
profiles, OpenShift, 10, 13
projects

creating, 44
name patterns for, 45
RBAC for, 45

PV (persistent volume), 14, 23, 73
PVC (persistent volume claim), 15, 23, 73

Q
quality of service, for resources, 100
quotas, 101-104

enforcement, 104
multiproject, 106
scopes, 103-104

R
RBAC (role-based access control), 45
recreate deployment strategy, 21-22
Red Hat Developer Program, ix
REPL (read-eval-print-loop) shell, 127
replication controller, 17
requests, for resources, 100, 125
resource scheduling, 99-106

132 | Index

default behavior, 99
limits for, 100, 104-105, 125
quality of service for, 100-100
quotas for, 101-104, 106
requests for, 100, 125

resources, 26-27, 108
(see also memory)

role-based access control (RBAC), 45
rollbacks, 32-33
rolling deployment strategy, 18-19

S
S2I (Source-to-Image) build strategy, 75, 79-81

custom builder for, 81-88
custom scripts for, 81

scheduler, Kubernetes, 99, 122
(see also resource scheduling)

SCM (source code management), 2, 120
(see also Git)

SDLC (software development lifecycle)
build, tag, promote process, 43-44
continuous delivery with, 3

secrets, 59-64
creating, 60, 63
deleting, 60
encrypting, 63
labels for, 60
mounting as environment variables, 62-63
mounting as volumes, 61-62
size of, 63

security, 127
services, 122

(see also Kubernetes)
session affinity, 123
slave images, 41, 43
software configuration management (see CM

(configuration management))
software delivery process, 1
software development lifecycle (see SDLC)
software supply chain, 50-52
SonarQube plug-in, 56
source code management (see SCM)
Source-to-Image build strategy (see S2I build

strategy)
Spring Cloud Kubernetes, 64
stateful pods, 124
stateless/share-nothing architecture, 123
sticky sessions, 123

storage
attaching, 14-16
persistent storage, 56
storage factor, 123

swap space, 107

T
triggers, for deployments, 17, 19-21, 54, 68-70
12 Factor Apps, 119-128

admin processes factor, 127
backing services factor, 122
build, release, run factor, 122
codebase factor, 120
concurrency factor, 124
configuration factor, 121
dependencies factor, 121
dev/prod parity factor, 126
disposability factor, 125-126
logs factor, 126
port binding factor, 124
processes factor, 123

V
version control system (see SCM (source code

management))
volumes

mounting configuration maps as, 64
mounting secrets as, 61-62
PV (persistent volume), 14, 23, 73
PVC (persistent volume claim), 15, 23, 73
types supported, 123

W
web-ui (console)

Jenkins deployments, 36-38
logging in from, 12-13
logs, 92, 94
pipeline build, 48
pipeline configuration, 39
pipeline edits, 46
PVC, creating, 16
quotas, querying, 102, 105, 110
rollbacks, 33-33
URL for, 8, 12

X
xip.io, 8

Index | 133

About the Authors
Stefano Picozzi is the Red Hat lead in OpenShift for Australia and New Zealand. He
has been helping clients transform to take advantage of container management plat‐
forms since OpenShift’s general availability in 2012. His background includes man‐
agement and advisory in software process improvement and cloud infrastructure
solutions to large enterprises across the Asia Pacific region.

Mike Hepburn has a background in application architecture, middleware integration
and operations, development, and helping large organizations continually transform
and adapt to the ever-changing IT landscape. He is currently Red Hat’s ANZ PaaS
subject matter expert.

Noel O’Connor is a Principal Consultant and Architect at Red Hat. He has extensive
experience leading and delivering key customer projects for Red Hat customers
around the world. He’s the founder of the Sydney Kubernetes Meetup and is passion‐
ate about helping organizations across Europe and Asia as a navigator on their Open‐
Shift journey to containerization and PaaS.

Colophon
The animal on the cover of DevOps with OpenShift is the white-bellied parrot (Pion‐
ites leucogaster), also known as the green-thighed parrot. Making its home in the for‐
ests of the Amazon basin in Brazil, the white-bellied parrot is a small, colorful bird
with a yellow or orange head, white underside, and green wings.

White-bellied parrots feed on a variety of fruits and seeds. They nest in tree hollows
high off the ground to avoid predators. Some are kept as pets, and they can be trained
to imitate sounds like whistles and bells, although they cannot imitate speech like
other parrots.

The population of the white-bellied parrot is expected to decline significantly over the
next few decades due to the rapid deforestation taking place in the Amazon basin.
Because of this the species is currently listed as endangered.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Buffon. The cover fonts are URW Typewriter and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why We Wrote This Book
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments
	Stefano
	Mike
	Noel

	Chapter 1. Introduction to DevOps with OpenShift
	DevOps
	Containers
	Container Orchestration
	Continuous Integration
	Continuous Delivery
	Continuous Deployment
	Pipelines
	Software Configuration Management
	Deployment Patterns
	Continuous Improvement
	Summary

	Chapter 2. Installing the All-In-One OpenShift
	Software Requirements
	Install OpenShift oc Client Tools
	Install Docker
	Launch OpenShift

	Verify Your Environment
	Log In Using the Command Line
	Log In from Console

	Working with Storage
	Create a Persistent Volume
	Set Up the Volume Claim

	Create a GitHub Account
	Alternative Form Factors
	Summary

	Chapter 3. Deployments
	The Replication Controller
	Deployment Strategies
	Rolling
	Triggers
	Recreate
	Custom
	Lifecycle Hooks
	Deployment Pod Resources

	Blue-Green Deployments
	A/B Deployments
	Canary Deployments
	Rollbacks
	Summary

	Chapter 4. Pipelines
	Our First Pipeline Example
	Pipeline Components
	So What’s Happened Here? Examination of the Pipeline Details
	Explore Jenkins

	Multiple Project Pipeline Example
	Build, Tag, Promote
	Create Projects
	Add Role-Based Access Control
	Deploy Jenkins and Our Pipeline Definition
	Deploy Our Sample Application
	Run Our Pipeline Deployment
	Quickly Deploying a New Branch

	Managing Image Changes
	Cascading Pipelines
	Customizing Jenkins
	Parallel Build Jobs
	Summary

	Chapter 5. Configuration Management
	Secrets
	Secret Creation
	Using Secrets in Pods
	Additional Information

	Configuration Maps
	Creating Configuration Maps
	Mounting Configuration Maps as Volumes
	Mounting the Configuration Map as Environment Variables

	Environment Variables
	Adding Environment Variables
	Removing Environment Variables
	Change Triggers

	Labels and Annotations
	Downward API
	Handling Large Configuration Data Sets
	Persistent Volumes
	Layered Images

	Summary

	Chapter 6. Custom Image Builds
	OpenShift Builds
	Build Strategies
	Build Sources
	Build Configurations
	Source to Image
	S2I Process
	Custom S2I Scripts

	Custom S2I Builder
	Builder Image
	S2I Scripts
	Adding a New Builder Image
	Building a Sample Application
	Troubleshooting

	Summary

	Chapter 7. Application Management
	Integrated Logging
	Container Logs Are Transient
	Aggregated Logging
	Kibana
	Some General Aggregated Kibana Queries
	Simple Metrics
	Resource Scheduling
	Quotas
	Quota Scopes
	Quota Enforcement
	Limit Ranges and Requests Versus Limits
	Multiproject Quotas

	Applications
	Eviction and Pod Rescheduling
	Overcommit
	Auto Pod Scaling
	Java-Based Application Monitoring and Management Using Jolokia
	Summary

	Afterword
	What We Covered
	Final Words

	Appendix A. OpenShift and 12 Factor Apps
	Codebase
	Dependencies
	Configuration
	Backing Services
	Build, Release, Run
	Processes
	Session Affinity
	Storage
	Stateful Pods

	Port Binding
	Concurrency
	Disposability
	Dev/Prod Parity
	Logs
	Admin Processes
	Security
	Summary

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

